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Dynamics of a bouncing ball in human performance
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On the basis of a modified bouncing-ball model, we investigated whether human movements utilize prin-
ciples of dynamic stability in their performance of a similar movement task. Stability analyses of the model
provided predictions about conditions indicative of a dynamically stable period-one regime. In a series of
experiments, human subjects bounced a ball rhythmically on a racket and displayed these conditions support-
ing that they attuned to and exploited the dynamic stability properties of the task.
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[. INTRODUCTION such attractive regimes as defined by the ball-bouncing map.
That human movements obey principles of dynamic sta-
A ball bouncing on an oscillating table is a frequently bility was already demonstrated in the skill of juggling three
studied model system to explore and demonstrate the prognd more balls with two handg]. In formal and empirical
erties of nonlinear dynamic systems, such as fixed pointsnalyses it was shown that in rhythmic stable performance,
periodic and strange attractors, and period-doubling bifurcaspecific component times of the hands’ and balls’ cycles
tions to chaogd1]. The model system has been applied toshowed properties of phase locking. In deliberately close
various problems in physical systems and in engineeringcorrespondence to the physical model of one-dimensional
ranging from quantum physical problems such as the Fermit1D) ball bouncing, Schaadt al. [6] investigated the task of
Ulam model to transportation of granular solids on conveyomne-handed bouncing of a ball with a racket, postulating that
belts[2,3]. The major interest in the ball-bouncing systemhumans attune to the attractive properties of period-one
has been directed to the chaotic features of the model angbuncing and exploit the dynamic stability of this task. This
their experimental replicatiof#]. Despite this diversity, only coordination strategy has the advantage that perturbations
few studies have ventured to transfer these theoretical in‘passively” converge back to the stable attractor, which
sights to more macroscopic applications such as the contrdherefore obviates the need for active error corrections. This
of actuator movements of robof§]. That ball bouncing is strategy stands in contrast to the approach of classical control
also a relevant formal model for understanding human movetheory in which a perturbation of the ball would be compen-
ment control was demonstrated by Schaal, Sternad, and Asated for by an explicit change of the actuator trajectory.
keson[6]. The skill of bouncing a ball rhythmically on a Although this conceptual framework still prevails in the at-
planar surface like a racket is a perceptual-motor task thaempts to understand human movement control, it has the
poses all the fundamental questions raised in the study afisadvantage of demanding highly accurate sensing and pre-
human movement coordination. To bounce or “juggle” a cise control, two characteristics that are not typical for bio-
ball rhythmically in the air requires the fine control of the logical performance and that can be computationally rather
vertical movements of the racket in order to hit the ball withdemanding in complex movement systems. An alternative
the appropriate velocity at the right place and the right timeapproach has arisen from the nonlinear dynamical system
with respect to the ball’s trajectory. The question in focus isperspective, which assumes that humans utilize stability
whether rhythmic performance is guided by stability proper-properties of the nonlinear dynamic system, rather than over-
ties of the mechanics of the task. An important differencerule them, and thereby find potentially more economical co-
between analyzing human movement and physical experirdination.
mental systems is that while the variables and parameters of In this paper, we briefly present the modeling approach as
physical experiments are under the experimenter's controfjeveloped and modified for studying human ball bouncing.
human subjects when bouncing a ball have to solve the prold~ollowing a previous study, which gave a first indication in a
lem by choosing a “parametrization” of their system in or- highly constrained experimental task that human subjects do
der to attain stability. Empirical data have to be evaluatedndeed exploit dynamic stability properties of the vibratory
with respect to the model’s prediction to test whether theball-table system, we present four new experiments that
parameter selection process of humans is indeed sensitive ti@monstrate the robustness of these results. The first experi-
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ment relaxed the experimental constraints of the task and
reproduced all the findings supporting dynamic stability. In~
the second experiment, subjects juggled the ball freely in 3D. *:=0
The third experiment examined whether during a learning
process the critical variable indicating dynamic stability is
optimized. A last experiment aimed to challenge the stability

of performance by depriving subjects of different perceptual
information. We showed that while dynamic stability re- x>0
mains a central criterion, additional stabilizing adjustments
complement the strategy. Kinetic information about the im-

pact appears to provide the most salient information to attune f
to dynamic stability.

X, <0
Il. THE MODEL

Bouncing a ball with a racket was modeled as a planar perturbation
surface performln.g perlodlc vertlcal. movements |mp§ctlng 2 FIG. 1. Simulation of Eq(1). The three runs demonstrds the
ball repeatedly, similar to the classical model of a vibratory . . .
neutrally stable regimexg=0, where a perturbation remains un-

table bouncing a particlel]. A key difference, though, is . )
that the racket's movement in our real experiments was not §1anged:(b) the unstable regimesz>0, where perturbations am-

single sinusoidal function and therefore the model allowecPlify; and (c) the stable regimez<0, where perturbations con-
for any arbitrary periodic movements of the table expresseyerge back to the attractor.
by a Fourier series. The often applied “high bounce” ap- )
proximation, assuming invariant position at impact and sym-Table motion andg, , exceeding a minimum value to com-
metric parabolic flight trajectories of the ball due to negli- pensate for the energy loss at impact, local linear stability
gible racket amplitude, is not suitable for the experimentakanalysis determined at least one asymptotically stable fixed
movements as seen below. Therefore, the model's motiopoint. The racket’s acceleration at impagt,, has to satisfy
was expressed in terms of a two-dimensional state vectofhe nontrivial condition: '
i.e., racket position and velocity, rather than phase. To facili-
tate comparison of the model with actual data, the equations
were not put into dimensionless form as in the classical dis- -29———
sipative standard mafknown as the modified Fermi-Ulam (1+ a)?
problem([8] or Zaslavskj-Rachko mappin@]).

Assumptions of the model are arbitrary periodic motion of o5 ¢ and « are constantsxg , is the major variable that
the surface, ballistic flight of the ball, instantaneous impacetermines the stability of the solution. Additionally, a non-

modeled by a cogfficient of restitution, and a mass of thggyg) Lyapunov stability analysis was performed on E.
racket that is considerably larger than the ball's such that th@nearized around equilibrium points in order to numerically

racket trajectory is not affected by the impact. In the Poin-getermine the degree of stability for 20 values within this
care map = ={(Xg,Xg,Xr,Xg) € R*xg—xg=0}, the equa- relatively large range given by E@2) (for details, see the
tions of motion can be expressed in discrete notation in refAppendix. As dynamical stability is closely related to vari-

1+a® .
<Xp,n<0. (2

erence to theth impact[6]: ability, this numerically derived stability index serves as an
inverse index for performance variability of the juggling tri-
Xgn+1=Xrn+1  @Nd Xgnr1=Xgn+a(tn), (1@ gis.
) i i Two major predictions were derivedi) Dynamically
XBn+1=" \/[(1+ a)xR,n—axB'n]z—Zg(xR,nH—XR,n), stable performance is obtained if the mean racket accelera-

(1D tion at impactxg satisfiesXge[—11.44 ms2,—0 ms 2].
5 , i This range is determined fag=0.42, which is the coeffi-

0.9t~ [(1+a)Xgn— aXgnlth+ (Xrn+1—Xr n) =0. cient of restitution for the first experiment. Figure 1 illus-

(10 {rates the behavior using a simulation of Eg). (a) If xg is
zero, small initial differences or perturbations remain un-
changed throughout the run and the system is neutrally
stable.(b) If X is positive, small initial differences or per-
turbations amplify and lead to loss of stability, if no correc-
ﬁve adjustments are made) If Xy is negative, small initial

not known at timen. However, stability analyses can be dlff_erenqest(()jr pertgrbﬁtlor;sb(lzhmml?h and (j%())rjrvhergde towards
applied to find criteria under which the system achieved™" INVarant dynamicafly stable performan © degree

stable solutions, where the period-one solution correspond?f Stability is a nonlinear function ofg, with a region of
to the task in our experiments. Provided smooth Periodicelatively high stability in the approximate rangee

t, denotes the times at successive impaxis;, Xgn >'<B,n,
Xrn are the vertical positions and velocities of ball and
racket at thenth impact; « is the coefficient of restitution;
andg is the acceleration due to gravity. These equations ar
not solvable because the racket’s position at impeet is
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FIG. 3. Experiment 1. Standard deviations of ball amplitudes

FISS. 2. Experiment 1: Histogram of racket accelerations at im‘throughout a 30-sec-long triak(A), plotted against trial means of
pact,xg . Plotted are the trial mean values of all subjects. Xg. The different symbols represent different subjects. The solid

_ _ . . . line represents the predicted degree of stability as calculated by the
_ 2 _ 2
[-6 ms °,—2ms “]. For the experiment, the inverse of this Lyapunov analysis.

measure is used and equated with variability. Figure 3 in-
cludes the results of the Lyapunov analysis where the curve

solid line represents the predicted shape for variability. Evi
dently, the range of dynamically stable valuesxgfand the

give impacts of one trial was in the range that predicted op-
timal stability, with an overall mean of 3.44 ms 2. The

. f optimal stability ch ith anda. Rel ‘ variability associated with subjectgk values, operational-
reglon of optimal stabllity changes with andg. Relevant ;04 55 standard deviations of repeated impacts within one
for.'.[he reported experiments is that the range of stable value[ﬁal, followed the predictions of the Lyapunov analysis. As
of xr decreases with highet. The shape of the function the task and the human movements were highly constrained,
approximately scales with the range. the question arises whether in less constrained settings these

Note that these predictions run counter to the hypothesigesults will be upheld. This was the purpose of the first two
that human movements maximize efficiency. Under this hyexperiments.

pothesis, the ball should be contacted at the moment of peak

velocity, corresponding tag=0, which would lead to the IIl. EXPERIMENT 1: UNCONSTRAINED ARM

highest possible amplitude for a given racket trajectory. If, MOVEMENTS AND RACKET ORIENTATION
instead, the ball is impacted at the decelerating trajectory

segment, peak velocity has to be higher in order to achieve Six subjects were instructed to bounce a ball rhythmically
the same ball amplitude. Hitting the ball in the deceleratingwith a hand-held racket in the air such that the ball amplitude
phase of the racket trajectory is also an unusual solutiomwas invariant over repeated impacts throughout the 30-sec-
from a control theoretic point of view. As reviewed [i], long trial, a pattern corresponding to a stable period-one so-
robotic studies of ball bouncing never discovered the dydution. The ball was affixed to a 1.3-m-long boom to confine
namically stable regime of the task, but rather selected maiits trajectory to a(curvi)linear path. A potentiometer, at-
ginally or even unstable regimes for ball bouncing, at thetached to the axis of rotation, measured the angular displace-
cost of having to include a complex feedback control stratiment of the ball. The racket’s acceleration was measured by
egy. Thus, negative acceleration at impact is a nontriviakn accelerometer attached to the racket’s surface; its vertical
prediction. If found in human performance, it most likely displacement was measured by a thin string spring-rolled
signifies that humans attune to the dynamic stability of thearound a coil on the floor with an attached potentiometer.
task rather than use an elaborate feedback control strategyNote that although the movements of the subject’s racket
In a previous study, Schaet al.[6] provided first support were unconstrained and the surface of the racket was no
for these predictions. The experiment was performed with donger fixed to the horizontal orientation, it was sufficient to
special apparatus where subjects were instructed to bounceneeasure only the racket’s vertical displacement and accelera-
ball rhythmically with a steady ball amplitude by moving the tion. Subjects performed six trials for each of three ampli-
handle of a 1-m-long lever arm with a racket attached at théudes(low, preferred, and highwhich were within the linear
other end. A pantograph linkage ensured that the racket'sange of the ball's trajectory. The conditions were performed
surface remained strictly horizontal. The ball was affixed to an random order. The principal movement parameter was the

1-m-long boom to confine its trajectory to (@urvilinear  racket's acceleration at ball impact. The megn calculated
path. Hand and racket as well as ball trajectories wergyer the approximately 30 impacts during one trial, served as
thereby strictly confined to the vertical dimension, in closethe empirical equivalent for the predicted acceleration. The
correspondence to the model. Accelerations were obtainegegree of stability was captured by using the task criterion of
by numerical differentiation of the position signal. The re-invariant ball amplitude. The variability of the ball amplitude
sults for six subjects verified that meag across the succes- was operationalized in terms of standard deviations of the
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ball amplitude across each triat(A).

ResultsFigure 2 shows a histogram of the mean values of 30 : ﬂg’ A
xg for all trials and all subjects. The distribution demon- o HK @ a
strates that subjects predominantly preferred movement so- 25} ﬁ Df[? o
lutions with negativexge [ —6 ms 2,—2 ms 2] with a me- — % A %o
dian at—3.40 ms 2. It is noteworthy that 6 of the 108 trials 2,0l & x
had positivexg showing that the choice okg<0 is not E”“ 4 . N
trivial. Figure 3 shows the same trial meansxgf plotted <} 15k ¢ X
againsto(A). The different symbols identify the six subjects '
who generally form clusters at selected subsets of values. I o o
Across subjects, theg values covered a large portion of the 0F o
range of predicted optimal stability. Interestingly, one sub- S S S T

ject (YO) tended to choose movement regimes at the bound-
ary of stability. This subject had very little experience with

racket sports, in comparison to the subject HK, who was an g 4. Experiment 2: Quartile range of racket accelerations at
experlenceq t?nm_s plf?}yer. In or.der to undv.ar_stand the morﬁnpact throughout a 30-sec-long tri&)(xg), plotted against trial
scattered distribution ofr values in the remaining four Sub- megians ofx, in the experiment where task restrictions were re-

jects, we investigated the time course of thetrial means  moved and bouncing was performed in 3D. The different symbols
across the sequence of 18 trials of each subject. Two subjecatspresent different subjects.

(KD and BD) showed a tendency to approach a preferred

value towards the end of the experimentZ ms 2 and and were truly performed in 3D. A sponge ball of the size of
—55 ms_z, respective|y However, these results were not & tennis ball was used with=0.52. SUbjeCtS were asked to

Significant’ probab|y because of the random sequence of anﬁnd their most comfortable ball amplitude and maintain it
plitude conditiongsee below throughout the 30-sec-long trial. They were also instructed to
Additionally, Fig. 3 shows that trial variability associated Stay as stationary as possible and not to do more than one
with the trial means and operationalizeddifA) showed a  Step to reach the ball when it was displaced slightly.
U-shaped dependency. This scatter clustered around the solid Results Participants performed trials with mediap val-
line, which represents the predictions of variability from theues ranging between 4.10 ms 2 and—0.54 ms 2 [10]. As
numerical Lyapunov analysis. Note, though, that while thesummarized in Fig. 4, different participants had trial means
values ofa(A) are in units of m, the values of the nonlocal around different values that reflected different preferences,
predictions are in arbitrary units and were scaled to the amwhich repeated the picture obtained from experiment 1. This
plitude of the data. Although only a qualitative comparison,result confirmed that the model’s predictions were again sat-

the close fit with the predicted U shape supported the predigsfied. What is noticeable, though, is the values were
tions. The difference between YO and HK as well as beconfined to a smaller range than previously. As can be com-
tween other subjects was also reflected in the variability;yted from Eq(2), the larger, the shorter the range, or the
(standard deviation®f impact period and racket amplitudes smaller the “well” providing optimal stability. To test the

per trial. This confirms that the value of is a sensitive predictions for variability associated with differex, val-
measure for stability of performance. Further support for thees, the same qualitative picture as in experiment 1 emerged.
pivotal role of dynamic stability in the subjects’ performance os no position data of the ball and racket were collected,

was provided by a comparative analysis of the six trials peryariability was quantified in terms of the quartile range of

formed in one amplitude condition. For the six trials of each;(R_ Q(Xg) consistently decreased with increasingly negative

arr;)plltl:de ﬁondlgon, .the.(]f va:udes, averafged across a”.t.s'x xr values. Note again that individual subjects rank differ-
subjects, showed a significant decrease irom more positive ntly: Subject JW had no experience with racket sports,

more ne_gatlye values. Thus, a short-t_erm learning ProCe3Fhile HK was the same subject who had experience in tennis
across six trials demonstrated that subjects progressively at-

tuned t d ‘ ant which offered. hiah s well as in the special experimental task. This result further
Slggi”tyowar S a periormance variant which ottered hig ehighlighted that acceleration values are modified through

practice towards values closer to the predicted optimal range.
In sum, both experiments verified that the model of a
IV. EXPERIMENT 2: FREE BOUNCING IN 3D _bon_mcing ball provided a useful abstraction to gain some
insight into the human perceptual-motor task of “ball jug-
In order to further pursue how robust these results are, gling.” Further, criteria for dynamic stability derived from
second experiment was run in which subjects performed bathe nonlinear impact map can be generalized to a task which
bouncing freely in 3D. Using the same tennis racket with theallows 3D motions of the effector. Human subjects appeared
attached accelerometer, the crucial modification was that th& exploit this stability in their control of rhythmic perfor-
ball was no longer attached to the boom. The accelerometenance. Moreover, long-term experience and short-term prac-
attached to the racket had a long cable connecting it to théce revealed significant interindividual differences and
computer, so that the racket movements were not obstructeshanges across trials, respectively. Therefore, a third experi-

X, [ms?]
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average of six subjects’ trial means. The solid line represents the
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FIG. 5. Experiment 3: Racket accelerations at impacacross
a series of 40 30-sec-long trials. Each data point represents the | EXPERIMENT 4: PERCEPTUAL MANIPULATIONS

exponential fit with the coefficients arif listed at the bottom.
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40 trials were performed in two blocks; half of the trials were
performed by the right and left hand, respectively. The order
of blocks was counterbalanced across the six subjects.

ResultsFigure 5 shows the average results of all six sub-
jects across the 40 trials. There is a highly significant expo-
nential decrease in the averagg towards more negative
values ofxg. Importantly, the variability ofg, operation-
alized in standard deviations, only slightly decreased with
trial number. This again highlights the pivotal nature of the
magnitude ofxg.

In a final step, we asked what kind of information subjects
rely on in order to “find” this dynamically stable solution,
or whether dynamic stability is compromised when the hu-
man actor is challenged by depriving perceptual information.

IN 1D BALL BOUNCING

Using the same apparatus as in Schetadl. [6], three

ment followed that directly tested whether impact accelerasubjects were instructed to bounce a ball rhythmically with a
tion changed across a series of trials. Based on previous réteady ball amplitude. Three perceptual conditions were im-
sults, it was hypothesized that subjects attune to dynamiposed: excluding visual information, no-Miparticipants

stability across a short-term learning process.

A

Amplitude [m]

Amplitude [m]

(@)

Amplitude [m]

V. EXPERIMENT 3: EFFECTS OF PRACTICE

closed their eyes excluding kinesthetic information about
the impact no-Kl, and a control condition with full percep-
tual information FI. To exclude kinesthetic information
about the impact, a telerobotic device was attached to the

Using the same experimental apparatus as in experimefijuggling arm,” which recorded its angular displacements,
1, subjects were asked to perform a sequence of 40 trials afhich then served as desired trajectories for a “robot” to
30-sec duration each. They could select their preferred anmove the actual racket. Thereby, subjects moved the handle
plitude but were then asked to maintain this amplitudeobserving the racket contacting the ball but without getting
throughout all trials of the experiment. There were short restactile information about the ball contact. All perceptual con-
periods between the individual trials. To avoid fatigue, theditions were performed with three different ball amplitudes

FIG. 6. Experiment 4: Three
time series and their respective

phase portraits of exemplary trials
performed in the three perceptual
conditions. The dots in the phase
portraits denote the impacts.
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6 —2 ms 2. All subjects showed the same relational pattern of
- s the median and quartile rang.esi'q{. The differences in the
5( . median and quartile ranges »f between the three subjects
reflected their respective experience with racket sports. Yet,
A common to all three subjects was the fact that the medians of

xg Were different for the three conditions in the order: Fl
<no-VI<no-KI. When only visual information was acces-

A sible (no-Kl), many trials were performed witks> 0, signi-
fying dynamically unstable solutions. This result indicated
that kinetic information about the impact was more neces-
sary than visual information, although the latter gave infor-
mation about the continuous kinematic trajectory of the ball.
Yet, despite being close to an unstable regime, the variability
in no-KI still remained low and therefore suggested that sub-

FIG. 7. Experiment 4: Quartile rang€(xg), versus median jects em_ployed a different strategy, probably aided'by visual

- . ) information, that corrected potential errors resulting from

values ofxg obtained for each trial performed under three percep-

tual conditions of three subjects. The enlarged points represent tHeerturbationsQ(xg) was lowest in Fl, but not statistically
means across the three perceptual conditions within each subjedifferent for no-VI and no-Kl. The difference i®(xg) be-
T_he solid line represents the predictions from the Lyapunov analypyeen Fl and no-VI or the comparable resultsQI(liiR) in
SIS. no-VI and no-KI cannot be explained by the model. This
result points to the fact that in FI, additional visually guided
for 30 s each, with two repetitions for each condition. adjustments must be made to reduce the variability.
Results.Exemplary time series of ball and racket dis- In conclusion, a modified impact map for the ball-
placements and the corresponding phase portraits of thgouncing system was used to extract predictions to test
same trials are shown for the three different perceptual conwhether humans, when performing a similar task, attune to
ditions in Fig. 6. The ball-racket impact positions clearly dynamically stable regimes. Results confirmed these hypoth-
varied across the trial and demonstrated that the often agses not only for highly constrained but also for uncon-
plied modeling assumption about symmetric parabolic balstrained movements. When subjects are deprived of either
trajectories was not appropriate here. Also, the racket’s diskinetic or kinematic information, kinetic information is
placement profile was not exactly sinusoidal. The dots in th&hown to provide the major source of information for param-
phase portraits visualize the impacts within one trial showingstrizing the movement system to this stable regime. When
predominantly negative values fag in the predicted range: kinematic information was the principal source, subjects
xre[—6ms 2,—2ms 2]. The FI condition[Fig. 6a)], tended to fall back on other, probably anticipatory and cor-

where no perceptual restrictions were imposed, showed kctive, control strategies.
tight cluster ofxg around a mediarxg=—4.16 ms? and

6 4 =2 0 2
X [ms?]

signified a dynamically stable solution, again replicating pre- ACKNOWLEDGMENTS
vious result§6]. The no-VI condition[Fig. &b)] was char- . _ _ _
acterized by mediang, values around-4.43 ms 2, but this This work was made possible by the National Science

predominantly stable solution was generally less consistenfoundation(D.S). Marcos Duarte is grateful to the Fun-
Note, that it was only for the very short moment of contactda®0 de Amparo aPesquisa do Estado de &&aulo—
that kinetic information about the impact was available. InFAPESP/Brazil.
contrast, when continuous kinematic information about

the ball’s trajectory throughout the entire cycle was avail-

. . . . - APPENDIX
able, but no kinetic information in no-KJFig. 6(c)], Xg
values frequently scattered into the positive rarfigedian Local linear stability
Xg=—0.31 ms?). Local linear stability analysis gives a first assessment of

Quantitative comparison of three perceptual conditionghe stability properties of the fixed points determined for the
for all trials and subjects revealed significant differences inmodel systentEq. 1). Linearizing about an equilibrium point
the mediarxg values and their variability. Median and quar- results in a matrix equation for the ball:

tile range ofxg, calculated per trial, served as empirical
estimates to test the model’s predictions statistically. Figure
7 shows all individual trial medians as well as the averages
for the three individual subjects in the three perceptual conThe characteristic 22 matrix A has two eigenvalues
ditions. The solid line represents predictions from they  \,. The condition for stable equilibrium points in dis-
Lyapunov analysis. The inserted figure shows the histogramrete systems is that the absolute value of both eigenvalues
of the trial medians ofxg with its respective median at must lie in the intervaJ 0,1]. It therefore suffices to test the

Xg,n+1=AXg n. (A1)
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larger absolute eigenvalul, s, for this condition and dis- Nonlocal stability
tinguish amongst the following three cases within the range

‘5 To obtain more differentiated predictions for t'h,gn val-
of Xgpn:

ues across the large rangeian, the most common method
is a nonlocal stability analysis of an equilibrium point. In this
g = D N =3 (A2a) analysis a Lyapunov function is found which is a potential
(1+a)? function of the state variables and which is formulated to
have a global minimum at this equilibrium point. If the time
(1-a)? . _ L derivative of this potential function is always negative, i.e.,
-9 (1+ a)2>XRvn> —9 =A== a its value monotonically decreases with time, the system con
(A2b) ~ verges to the minimum of the Lyapunov function. Since, by
definition, the minimum is the equilibrium point, global sta-
2 bility of the system is proven. For a nonlinear system a
1> N\l =a. (A20) Lyapunov function candidate can be derived from the linear-
(1+a)? ized systeme.qg.,[13]). The candidate function,,, for the
linearized dynamical system is:
The equations show that local stability only depends on
the racket's acceleration at impaet ,, the coefficient of Ln=Xg,,PXg,n- (Ad)
restitution,«, and the gravity acceleratian While « andg
are constant for a given experiment and not under the contrdi0 obtain negative time derivatives, the matfhas to sat-

of an effector systenkg , will serve as the main variable for 1S the equation
the assessment of different bouncing solutions in the experi-
ment. For the analytical evaluation of local stability, the

range ofil(R,n, where|\ na is at a minimum, is of primary

@mportance. For given values o‘f’_ the range ‘S_SEﬁ”eS'z- For matrix. For the discretized system, the valud_gfmust con-
Instance, for_a:0.42,_the range if—11.44 ms*,0 ms I tinuously decrease whety |, is recursively iterated through
However, this range is rather large and local stability analy-Eq (1). Thus, aAL can be defined between two successive
sis does not differentiate between conditions. Hence, a norifnbacfs n and n+1 of ball and racketAL—=L. .—L
local stability analysis is required to further classify these:XT Px T Px where the ﬁonlinenaﬁls sFem
locally stable solutions. A prerequisite for this analysis isE Bvi“ Btv”gl. B'”t dB%”’ a at XL
that different solutions can be compared, i.e., normalized g. (1) must be inserte OXBf'”r;rl' or ?(rlly sha %(Bii" m
such that quantitative comparisons are possible. Mathemat{\}:a?yesteorvt?]eazt:blrgeeasljjilrif)r(i)umngir?tUI\(;Vh%I; r?e :tiv\glvaﬁggé
cally, this question is addressed by topological Orbitalof gL indicate thatxq lies in IC:he Basin of a?traction a
equivalencg TOE), which tests whether one dynamical sys- B.n ’

tem can be continuously transformed into another one. smgle_ posmveAL chara_cte_rlze_xB,n as “”.St"’?b'.e- .
Using numerical optimization analysis it is possible to

assess these stability properties by simulating the dynamics
of the racket bouncing system given by Ed). At time t

A formal way of establishing TOE is to find an =0 an equilibrium point was defined to be at the impact
orientation-preserving homeomorphism between two dyjposition, xg=0, and the bouncing period was set to

_ 2
O>;(R,n>_ —(l a) .

_QB;(R,FI>_29

ATPA—P=—1I. (A5)

A is the system matrix of Eq(Al) and | is the identity

Topological orbital equivalence

namical system§11,12. The following scaling relatior: =0.4 s. The scaling relation ensures that these values can
. . be chosen arbitrarily without losing generality of the results.
Xg.n=CXg n The locally relevant section of the racket trajectory around

the equilibrium point was modeled as a sixth-order polyno-

(A3) mial in time (the order 6 was empirically determined to give
xgm=c2xR,n sufficient accuracy for the given purpgseg(t) =cq+cqt
+ Cot%+ cat3+ eyt + et + et

For the given impact conditiongg(t=0)=0, cy must be
zero. The constart; is also determined, because the racket
stant,c, the primed variables also fulfill Eq1), which can velocity at impgct is fully (Ijet('ermined. by the ballistic flight
be verified by inserting them into these equations. This im-"’?nd .the coefficient of r_estltutlon.. At_ulmpact the secon.d de-
plies that by choosing:= 1/, each periodic racket ball- rfivative of the polynomial equation isg(t=0)=2c,. This
bouncing system is normalized lyto unit period without —@cceleration was set to 20 different values, taken from the
changing its dynamical properties. Hence, dudtany fur- ~ range of local stability. The goal of the optimization was to
ther analysis of ball bouncing can be performed on one sysadjust the constants; to cg for each of the 2g(t=0) to
tem with unit period. For the present analyses it is importanaichieve the largest and steepest basin of attraction for the
that the scaling relation does not affect the acceleration of thequilibrium point. Values oAL were calculated by starting
racket. Thus, acceleration at impact can directly serve as e ball at 2500 different initial conditions in the vicinity of
measure of local stability. the equilibrium point. The sum of all 25Q8L’s for a given

T
XR,n_CXR,n

t,=ct,=7'=cr

fulfills the requirements of TOE for Eql). For any con-
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set of parameters, AL, was defined as an operational mea-performed with Powell's conjugate gradient metHad].

sure quantifying stability for eackg(t=0). The ball's ini- ~ Figure 3 shows the numerical results DAL as a func-
tial conditions were determined by different deviations fromtion of Xg(t). Note that smalk AL correspond to high glo-
the impact timet =0, and impact velocities around the equi- Pal stability. As the trajectory of the racket corresponding to

each of the differenk(t) was optimized to obtain maximal

librium point of xg. The range of the initial values was cho- tability. th it the best il ¢ h
sen to cover an appropriately large neighborhood around thg-aPtity, the results express the best possible case for eac

equilibrium point, but, as this calculation aimed to give rela-Xr(t). Stability is closely related to variability, since weakly
stable states are accompanied with larger fluctuations than

tive evaluations okg, the actual range limits could be fho' highly stable states and have longer relaxation times when
sen f[elely: tinte [—0.18r,+0.187], Xginte[—4MS%,  perturbed. Therefore, the variability af , should increase
—1ms 7]. The initial conditions were obtained by discretiz- proportional to the numerical estimate of the global stability
ing the intervals into 50 values each. The optimization wasndex, > AL.
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