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Dynamics of a bouncing ball in human performance
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On the basis of a modified bouncing-ball model, we investigated whether human movements utilize prin-
ciples of dynamic stability in their performance of a similar movement task. Stability analyses of the model
provided predictions about conditions indicative of a dynamically stable period-one regime. In a series of
experiments, human subjects bounced a ball rhythmically on a racket and displayed these conditions support-
ing that they attuned to and exploited the dynamic stability properties of the task.
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I. INTRODUCTION

A ball bouncing on an oscillating table is a frequen
studied model system to explore and demonstrate the p
erties of nonlinear dynamic systems, such as fixed poi
periodic and strange attractors, and period-doubling bifur
tions to chaos@1#. The model system has been applied
various problems in physical systems and in engineer
ranging from quantum physical problems such as the Fe
Ulam model to transportation of granular solids on conve
belts @2,3#. The major interest in the ball-bouncing syste
has been directed to the chaotic features of the model
their experimental replication@4#. Despite this diversity, only
few studies have ventured to transfer these theoretica
sights to more macroscopic applications such as the con
of actuator movements of robots@5#. That ball bouncing is
also a relevant formal model for understanding human mo
ment control was demonstrated by Schaal, Sternad, and
keson @6#. The skill of bouncing a ball rhythmically on a
planar surface like a racket is a perceptual-motor task
poses all the fundamental questions raised in the stud
human movement coordination. To bounce or ‘‘juggle’’
ball rhythmically in the air requires the fine control of th
vertical movements of the racket in order to hit the ball w
the appropriate velocity at the right place and the right ti
with respect to the ball’s trajectory. The question in focus
whether rhythmic performance is guided by stability prop
ties of the mechanics of the task. An important differen
between analyzing human movement and physical exp
mental systems is that while the variables and paramete
physical experiments are under the experimenter’s con
human subjects when bouncing a ball have to solve the p
lem by choosing a ‘‘parametrization’’ of their system in o
der to attain stability. Empirical data have to be evalua
with respect to the model’s prediction to test whether
parameter selection process of humans is indeed sensiti
1063-651X/2000/63~1!/011902~8!/$15.00 63 0119
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such attractive regimes as defined by the ball-bouncing m
That human movements obey principles of dynamic s

bility was already demonstrated in the skill of juggling thr
and more balls with two hands@7#. In formal and empirical
analyses it was shown that in rhythmic stable performan
specific component times of the hands’ and balls’ cyc
showed properties of phase locking. In deliberately clo
correspondence to the physical model of one-dimensio
~1D! ball bouncing, Schaalet al. @6# investigated the task o
one-handed bouncing of a ball with a racket, postulating t
humans attune to the attractive properties of period-
bouncing and exploit the dynamic stability of this task. Th
coordination strategy has the advantage that perturbat
‘‘passively’’ converge back to the stable attractor, whi
therefore obviates the need for active error corrections. T
strategy stands in contrast to the approach of classical co
theory in which a perturbation of the ball would be compe
sated for by an explicit change of the actuator trajecto
Although this conceptual framework still prevails in the a
tempts to understand human movement control, it has
disadvantage of demanding highly accurate sensing and
cise control, two characteristics that are not typical for b
logical performance and that can be computationally rat
demanding in complex movement systems. An alterna
approach has arisen from the nonlinear dynamical sys
perspective, which assumes that humans utilize stab
properties of the nonlinear dynamic system, rather than o
rule them, and thereby find potentially more economical
ordination.

In this paper, we briefly present the modeling approach
developed and modified for studying human ball bounci
Following a previous study, which gave a first indication in
highly constrained experimental task that human subjects
indeed exploit dynamic stability properties of the vibrato
ball-table system, we present four new experiments t
demonstrate the robustness of these results. The first ex
©2000 The American Physical Society02-1
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STERNAD, DUARTE, KATSUMATA, AND SCHAAL PHYSICAL REVIEW E63 011902
ment relaxed the experimental constraints of the task
reproduced all the findings supporting dynamic stability.
the second experiment, subjects juggled the ball freely in
The third experiment examined whether during a learn
process the critical variable indicating dynamic stability
optimized. A last experiment aimed to challenge the stabi
of performance by depriving subjects of different percept
information. We showed that while dynamic stability r
mains a central criterion, additional stabilizing adjustme
complement the strategy. Kinetic information about the i
pact appears to provide the most salient information to att
to dynamic stability.

II. THE MODEL

Bouncing a ball with a racket was modeled as a pla
surface performing periodic vertical movements impactin
ball repeatedly, similar to the classical model of a vibrato
table bouncing a particle@1#. A key difference, though, is
that the racket’s movement in our real experiments was n
single sinusoidal function and therefore the model allow
for any arbitrary periodic movements of the table expres
by a Fourier series. The often applied ‘‘high bounce’’ a
proximation, assuming invariant position at impact and sy
metric parabolic flight trajectories of the ball due to neg
gible racket amplitude, is not suitable for the experimen
movements as seen below. Therefore, the model’s mo
was expressed in terms of a two-dimensional state vec
i.e., racket position and velocity, rather than phase. To fac
tate comparison of the model with actual data, the equat
were not put into dimensionless form as in the classical
sipative standard map~known as the modified Fermi-Ulam
problem@8# or Zaslavskj-Rachko mapping@9#!.

Assumptions of the model are arbitrary periodic motion
the surface, ballistic flight of the ball, instantaneous imp
modeled by a coefficient of restitution, and a mass of
racket that is considerably larger than the ball’s such that
racket trajectory is not affected by the impact. In the Po
caré map (5$(xB ,ẋB ,xR ,ẋR)PR4uxB2xR50%, the equa-
tions of motion can be expressed in discrete notation in
erence to thenth impact @6#:

xB,n115xR,n11 and xR,n115xR,n11~ tn!, ~1a!

ẋB,n1152A@~11a!ẋR,n2a ẋB,n#222g~xR,n112xR,n!,
~1b!

0.5gtn
22@~11a!ẋR,n2a ẋB,n#tn1~xR,n112xR,n!50.

~1c!

tn denotes the times at successive impacts;xB,n , xR,n , ẋB,n ,
ẋR,n are the vertical positions and velocities of ball a
racket at thenth impact;a is the coefficient of restitution
andg is the acceleration due to gravity. These equations
not solvable because the racket’s position at impactn11 is
not known at timen. However, stability analyses can b
applied to find criteria under which the system achiev
stable solutions, where the period-one solution correspo
to the task in our experiments. Provided smooth Perio
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Table motion andẋR,n exceeding a minimum value to com
pensate for the energy loss at impact, local linear stab
analysis determined at least one asymptotically stable fi
point. The racket’s acceleration at impactẍR,n has to satisfy
the nontrivial condition:

22g
11a2

~11a!2
, ẍR,n,0. ~2!

As g and a are constants,ẍR,n is the major variable tha
determines the stability of the solution. Additionally, a no
local Lyapunov stability analysis was performed on Eq.~1!
linearized around equilibrium points in order to numerica
determine the degree of stability for 20 values within th
relatively large range given by Eq.~2! ~for details, see the
Appendix!. As dynamical stability is closely related to var
ability, this numerically derived stability index serves as
inverse index for performance variability of the juggling tr
als.

Two major predictions were derived.~i! Dynamically
stable performance is obtained if the mean racket accel
tion at impact ẍR satisfiesẍRP@211.44 ms22,20 ms22#.
This range is determined fora50.42, which is the coeffi-
cient of restitution for the first experiment. Figure 1 illu
trates the behavior using a simulation of Eq.~1!. ~a! If ẍR is
zero, small initial differences or perturbations remain u
changed throughout the run and the system is neutr
stable.~b! If ẍR is positive, small initial differences or per
turbations amplify and lead to loss of stability, if no corre
tive adjustments are made.~c! If ẍR is negative, small initial
differences or perturbations diminish and converge towa
an invariant dynamically stable performance.~ii ! The degree
of stability is a nonlinear function ofẍR , with a region of
relatively high stability in the approximate rangeẍRP

FIG. 1. Simulation of Eq.~1!. The three runs demonstrate~a! the

neutrally stable regime,ẍR50, where a perturbation remains un

changed;~b! the unstable regime,ẍR.0, where perturbations am

plify; and ~c! the stable regimeẍR,0, where perturbations con
verge back to the attractor.
2-2
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DYNAMICS OF A BOUNCING BALL IN HUMAN PERFORMANCE PHYSICAL REVIEW E63 011902
@26 ms22,22ms22#. For the experiment, the inverse of th
measure is used and equated with variability. Figure 3
cludes the results of the Lyapunov analysis where the cur
solid line represents the predicted shape for variability. E
dently, the range of dynamically stable values ofẍR and the
region of optimal stability changes witha and g. Relevant
for the reported experiments is that the range of stable va
of ẍR decreases with highera. The shape of the function
approximately scales with the range.

Note that these predictions run counter to the hypoth
that human movements maximize efficiency. Under this
pothesis, the ball should be contacted at the moment of p
velocity, corresponding toẍR50, which would lead to the
highest possible amplitude for a given racket trajectory.
instead, the ball is impacted at the decelerating trajec
segment, peak velocity has to be higher in order to achi
the same ball amplitude. Hitting the ball in the decelerat
phase of the racket trajectory is also an unusual solu
from a control theoretic point of view. As reviewed in@6#,
robotic studies of ball bouncing never discovered the
namically stable regime of the task, but rather selected m
ginally or even unstable regimes for ball bouncing, at
cost of having to include a complex feedback control str
egy. Thus, negative acceleration at impact is a nontri
prediction. If found in human performance, it most like
signifies that humans attune to the dynamic stability of
task rather than use an elaborate feedback control strate

In a previous study, Schaalet al. @6# provided first support
for these predictions. The experiment was performed wit
special apparatus where subjects were instructed to boun
ball rhythmically with a steady ball amplitude by moving th
handle of a 1-m-long lever arm with a racket attached at
other end. A pantograph linkage ensured that the rack
surface remained strictly horizontal. The ball was affixed t
1-m-long boom to confine its trajectory to a~curvi!linear
path. Hand and racket as well as ball trajectories w
thereby strictly confined to the vertical dimension, in clo
correspondence to the model. Accelerations were obta
by numerical differentiation of the position signal. The r
sults for six subjects verified that meanẍR across the succes

FIG. 2. Experiment 1: Histogram of racket accelerations at

pact, ẍR . Plotted are the trial mean values of all subjects.
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sive impacts of one trial was in the range that predicted
timal stability, with an overall mean of23.44 ms22. The
variability associated with subjects’ẍR values, operational-
ized as standard deviations of repeated impacts within
trial, followed the predictions of the Lyapunov analysis. A
the task and the human movements were highly constrai
the question arises whether in less constrained settings t
results will be upheld. This was the purpose of the first t
experiments.

III. EXPERIMENT 1: UNCONSTRAINED ARM
MOVEMENTS AND RACKET ORIENTATION

Six subjects were instructed to bounce a ball rhythmica
with a hand-held racket in the air such that the ball amplitu
was invariant over repeated impacts throughout the 30-
long trial, a pattern corresponding to a stable period-one
lution. The ball was affixed to a 1.3-m-long boom to confi
its trajectory to a~curvi!linear path. A potentiometer, at
tached to the axis of rotation, measured the angular displ
ment of the ball. The racket’s acceleration was measured
an accelerometer attached to the racket’s surface; its ver
displacement was measured by a thin string spring-ro
around a coil on the floor with an attached potentiome
Note that although the movements of the subject’s rac
were unconstrained and the surface of the racket was
longer fixed to the horizontal orientation, it was sufficient
measure only the racket’s vertical displacement and acce
tion. Subjects performed six trials for each of three amp
tudes~low, preferred, and high!, which were within the linear
range of the ball’s trajectory. The conditions were perform
in random order. The principal movement parameter was
racket’s acceleration at ball impact. The meanẍR , calculated
over the approximately 30 impacts during one trial, served
the empirical equivalent for the predicted acceleration. T
degree of stability was captured by using the task criterion
invariant ball amplitude. The variability of the ball amplitud
was operationalized in terms of standard deviations of

-
FIG. 3. Experiment 1: Standard deviations of ball amplitud

throughout a 30-sec-long trial,s(A), plotted against trial means o

ẍR . The different symbols represent different subjects. The s
line represents the predicted degree of stability as calculated by
Lyapunov analysis.
2-3
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STERNAD, DUARTE, KATSUMATA, AND SCHAAL PHYSICAL REVIEW E63 011902
ball amplitude across each trial,s(A).
Results.Figure 2 shows a histogram of the mean values

ẍR for all trials and all subjects. The distribution demo
strates that subjects predominantly preferred movement
lutions with negativeẍRP@26 ms22,22 ms22# with a me-
dian at23.40 ms22. It is noteworthy that 6 of the 108 trial
had positiveẍR showing that the choice ofẍR,0 is not
trivial. Figure 3 shows the same trial means ofẍR plotted
againsts(A). The different symbols identify the six subjec
who generally form clusters at selected subsets of val
Across subjects, theẍR values covered a large portion of th
range of predicted optimal stability. Interestingly, one su
ject ~YO! tended to choose movement regimes at the bou
ary of stability. This subject had very little experience wi
racket sports, in comparison to the subject HK, who was
experienced tennis player. In order to understand the m
scattered distribution ofẍR values in the remaining four sub
jects, we investigated the time course of theẍR trial means
across the sequence of 18 trials of each subject. Two sub
~KD and BD! showed a tendency to approach a prefer
value towards the end of the experiment (22 ms22 and
25.5 ms22, respectively!. However, these results were n
significant, probably because of the random sequence of
plitude conditions~see below!.

Additionally, Fig. 3 shows that trial variability associate
with the trial means and operationalized ins(A) showed a
U-shaped dependency. This scatter clustered around the
line, which represents the predictions of variability from t
numerical Lyapunov analysis. Note, though, that while
values ofs(A) are in units of m, the values of the nonloc
predictions are in arbitrary units and were scaled to the
plitude of the data. Although only a qualitative compariso
the close fit with the predicted U shape supported the pre
tions. The difference between YO and HK as well as b
tween other subjects was also reflected in the variab
~standard deviations! of impact period and racket amplitude
per trial. This confirms that the value ofẍR is a sensitive
measure for stability of performance. Further support for
pivotal role of dynamic stability in the subjects’ performan
was provided by a comparative analysis of the six trials p
formed in one amplitude condition. For the six trials of ea
amplitude condition, theẍR values, averaged across all s
subjects, showed a significant decrease from more positiv
more negative values. Thus, a short-term learning proc
across six trials demonstrated that subjects progressivel
tuned towards a performance variant which offered hig
stability.

IV. EXPERIMENT 2: FREE BOUNCING IN 3D

In order to further pursue how robust these results ar
second experiment was run in which subjects performed
bouncing freely in 3D. Using the same tennis racket with
attached accelerometer, the crucial modification was that
ball was no longer attached to the boom. The accelerom
attached to the racket had a long cable connecting it to
computer, so that the racket movements were not obstru
01190
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and were truly performed in 3D. A sponge ball of the size
a tennis ball was used witha50.52. Subjects were asked t
find their most comfortable ball amplitude and maintain
throughout the 30-sec-long trial. They were also instructed
stay as stationary as possible and not to do more than
step to reach the ball when it was displaced slightly.

Results.Participants performed trials with medianẍR val-
ues ranging between24.10 ms22 and20.54 ms22 @10#. As
summarized in Fig. 4, different participants had trial mea
around different values that reflected different preferenc
which repeated the picture obtained from experiment 1. T
result confirmed that the model’s predictions were again
isfied. What is noticeable, though, is thatẍR values were
confined to a smaller range than previously. As can be co
puted from Eq.~2!, the largera, the shorter the range, or th
smaller the ‘‘well’’ providing optimal stability. To test the
predictions for variability associated with differentẍR val-
ues, the same qualitative picture as in experiment 1 emer
As no position data of the ball and racket were collect
variability was quantified in terms of the quartile range
ẍR. Q( ẍR) consistently decreased with increasingly negat
ẍR values. Note again that individual subjects rank diffe
ently: Subject JW had no experience with racket spo
while HK was the same subject who had experience in ten
as well as in the special experimental task. This result furt
highlighted that acceleration values are modified throu
practice towards values closer to the predicted optimal ran

In sum, both experiments verified that the model of
bouncing ball provided a useful abstraction to gain so
insight into the human perceptual-motor task of ‘‘ball ju
gling.’’ Further, criteria for dynamic stability derived from
the nonlinear impact map can be generalized to a task w
allows 3D motions of the effector. Human subjects appea
to exploit this stability in their control of rhythmic perfor
mance. Moreover, long-term experience and short-term p
tice revealed significant interindividual differences a
changes across trials, respectively. Therefore, a third exp

FIG. 4. Experiment 2: Quartile range of racket accelerations

impact throughout a 30-sec-long trial,Q( ẍR), plotted against trial

medians ofẍR in the experiment where task restrictions were
moved and bouncing was performed in 3D. The different symb
represent different subjects.
2-4
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DYNAMICS OF A BOUNCING BALL IN HUMAN PERFORMANCE PHYSICAL REVIEW E63 011902
ment followed that directly tested whether impact accele
tion changed across a series of trials. Based on previou
sults, it was hypothesized that subjects attune to dyna
stability across a short-term learning process.

V. EXPERIMENT 3: EFFECTS OF PRACTICE

Using the same experimental apparatus as in experim
1, subjects were asked to perform a sequence of 40 tria
30-sec duration each. They could select their preferred
plitude but were then asked to maintain this amplitu
throughout all trials of the experiment. There were short r
periods between the individual trials. To avoid fatigue, t

FIG. 5. Experiment 3: Racket accelerations at impactẍR across
a series of 40 30-sec-long trials. Each data point represents
average of six subjects’ trial means. The solid line represents
exponential fit with the coefficients andR2 listed at the bottom.
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40 trials were performed in two blocks; half of the trials we
performed by the right and left hand, respectively. The or
of blocks was counterbalanced across the six subjects.

Results.Figure 5 shows the average results of all six su
jects across the 40 trials. There is a highly significant ex
nential decrease in the averageẍR towards more negative
values ofẍR . Importantly, the variability ofẍR , operation-
alized in standard deviations, only slightly decreased w
trial number. This again highlights the pivotal nature of t
magnitude ofẍR .

In a final step, we asked what kind of information subje
rely on in order to ‘‘find’’ this dynamically stable solution
or whether dynamic stability is compromised when the h
man actor is challenged by depriving perceptual informati

VI. EXPERIMENT 4: PERCEPTUAL MANIPULATIONS
IN 1D BALL BOUNCING

Using the same apparatus as in Schaalet al. @6#, three
subjects were instructed to bounce a ball rhythmically wit
steady ball amplitude. Three perceptual conditions were
posed: excluding visual information, no-VI~participants
closed their eyes!, excluding kinesthetic information abou
the impact no-KI, and a control condition with full percep
tual information FI. To exclude kinesthetic informatio
about the impact, a telerobotic device was attached to
‘‘juggling arm,’’ which recorded its angular displacement
which then served as desired trajectories for a ‘‘robot’’
move the actual racket. Thereby, subjects moved the ha
observing the racket contacting the ball but without gett
tactile information about the ball contact. All perceptual co
ditions were performed with three different ball amplitud

he
e

e
s
l

e

FIG. 6. Experiment 4: Three
time series and their respectiv
phase portraits of exemplary trial
performed in the three perceptua
conditions. The dots in the phas
portraits denote the impacts.
2-5



s-
t
o

rly
a
a

di
th
in
:

d

re

en
c
In
u
il

n
i

r-
al
ur
ge
on
he
ra
t

of

ts
et,

s of
FI
-

ed
es-
or-
all.
ility
ub-
ual
m

is
d

ll-
test

to
oth-
n-
ther
s
m-
en

cts
or-

ce
-

t of
he
t

-
lues
e

ep
t t
je

al

STERNAD, DUARTE, KATSUMATA, AND SCHAAL PHYSICAL REVIEW E63 011902
for 30 s each, with two repetitions for each condition.
Results.Exemplary time series of ball and racket di

placements and the corresponding phase portraits of
same trials are shown for the three different perceptual c
ditions in Fig. 6. The ball-racket impact positions clea
varied across the trial and demonstrated that the often
plied modeling assumption about symmetric parabolic b
trajectories was not appropriate here. Also, the racket’s
placement profile was not exactly sinusoidal. The dots in
phase portraits visualize the impacts within one trial show
predominantly negative values forẍR in the predicted range
ẍRP@26 ms22,22 ms22#. The FI condition @Fig. 6~a!#,
where no perceptual restrictions were imposed, showe
tight cluster of ẍR around a medianẍR524.16 ms22 and
signified a dynamically stable solution, again replicating p
vious results@6#. The no-VI condition@Fig. 6~b!# was char-
acterized by medianẍR values around24.43 ms22, but this
predominantly stable solution was generally less consist
Note, that it was only for the very short moment of conta
that kinetic information about the impact was available.
contrast, when continuous kinematic information abo
the ball’s trajectory throughout the entire cycle was ava
able, but no kinetic information in no-KI@Fig. 6~c!#, ẍR
values frequently scattered into the positive range~median
ẍR520.31 ms22).

Quantitative comparison of three perceptual conditio
for all trials and subjects revealed significant differences
the medianẍR values and their variability. Median and qua
tile range of ẍR , calculated per trial, served as empiric
estimates to test the model’s predictions statistically. Fig
7 shows all individual trial medians as well as the avera
for the three individual subjects in the three perceptual c
ditions. The solid line represents predictions from t
Lyapunov analysis. The inserted figure shows the histog
of the trial medians ofẍR with its respective median a

FIG. 7. Experiment 4: Quartile range,Q( ẍR), versus median

values ofẍR obtained for each trial performed under three perc
tual conditions of three subjects. The enlarged points represen
means across the three perceptual conditions within each sub
The solid line represents the predictions from the Lyapunov an
sis.
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22 ms22. All subjects showed the same relational pattern
the median and quartile ranges ofẍR . The differences in the
median and quartile ranges ofẍR between the three subjec
reflected their respective experience with racket sports. Y
common to all three subjects was the fact that the median
ẍR were different for the three conditions in the order:
,no-VI,no-KI. When only visual information was acces
sible ~no-KI!, many trials were performed withẍR.0, signi-
fying dynamically unstable solutions. This result indicat
that kinetic information about the impact was more nec
sary than visual information, although the latter gave inf
mation about the continuous kinematic trajectory of the b
Yet, despite being close to an unstable regime, the variab
in no-KI still remained low and therefore suggested that s
jects employed a different strategy, probably aided by vis
information, that corrected potential errors resulting fro
perturbations.Q( ẍR) was lowest in FI, but not statistically
different for no-VI and no-KI. The difference inQ( ẍR) be-
tween FI and no-VI or the comparable results inQ( ẍR) in
no-VI and no-KI cannot be explained by the model. Th
result points to the fact that in FI, additional visually guide
adjustments must be made to reduce the variability.

In conclusion, a modified impact map for the ba
bouncing system was used to extract predictions to
whether humans, when performing a similar task, attune
dynamically stable regimes. Results confirmed these hyp
eses not only for highly constrained but also for unco
strained movements. When subjects are deprived of ei
kinetic or kinematic information, kinetic information i
shown to provide the major source of information for para
etrizing the movement system to this stable regime. Wh
kinematic information was the principal source, subje
tended to fall back on other, probably anticipatory and c
rective, control strategies.
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APPENDIX

Local linear stability

Local linear stability analysis gives a first assessmen
the stability properties of the fixed points determined for t
model system~Eq. 1!. Linearizing about an equilibrium poin
results in a matrix equation for the ball:

xB,n115AxB,n. ~A1!

The characteristic 232 matrix A has two eigenvalues
l1 ,l2 . The condition for stable equilibrium points in dis
crete systems is that the absolute value of both eigenva
must lie in the interval@0,1#. It therefore suffices to test th
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larger absolute eigenvalue,ulmaxu, for this condition and dis-
tinguish amongst the following three cases within the ran
of ẍR,n :

0. ẍR,n>2g
~12a!2

~11a!2
: 1.ulmaxu>a, ~A2a!

2g
~12a!2

~11a!2
. ẍR,n.2g: ul15l25l3u5a,

~A2b!

2g> ẍR,n.22g
11a2

~11a!2
: 1.ulmaxu>a. ~A2c!

The equations show that local stability only depends
the racket’s acceleration at impact,ẍR,n , the coefficient of
restitution,a, and the gravity accelerationg. While a andg
are constant for a given experiment and not under the con
of an effector system,ẍR,n will serve as the main variable fo
the assessment of different bouncing solutions in the exp
ment. For the analytical evaluation of local stability, t
range ofẍR,n , whereulmaxu is at a minimum, is of primary
importance. For given values ofa, the range is defined. Fo
instance, fora50.42, the range is@211.44 ms22,0 ms22#.
However, this range is rather large and local stability ana
sis does not differentiate between conditions. Hence, a n
local stability analysis is required to further classify the
locally stable solutions. A prerequisite for this analysis
that different solutions can be compared, i.e., normaliz
such that quantitative comparisons are possible. Mathem
cally, this question is addressed by topological orb
equivalence~TOE!, which tests whether one dynamical sy
tem can be continuously transformed into another one.

Topological orbital equivalence

A formal way of establishing TOE is to find a
orientation-preserving homeomorphism between two
namical systems@11,12#. The following scaling relationh:

hª5
ẋB,n8 5cẋB,n

ẋR,n8 5cẋR,n

xR,n8 5c2xR,n

tn85ctn⇒t85ct

~A3!

fulfills the requirements of TOE for Eq.~1!. For any con-
stant,c, the primed variables also fulfill Eq.~1!, which can
be verified by inserting them into these equations. This
plies that by choosingc51/tn each periodic racket ball
bouncing system is normalized byh to unit period without
changing its dynamical properties. Hence, due toh, any fur-
ther analysis of ball bouncing can be performed on one s
tem with unit period. For the present analyses it is import
that the scaling relation does not affect the acceleration of
racket. Thus, acceleration at impact can directly serve a
measure of local stability.
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Nonlocal stability

To obtain more differentiated predictions for theẍR,n val-
ues across the large range ofẍR,n , the most common method
is a nonlocal stability analysis of an equilibrium point. In th
analysis a Lyapunov function is found which is a potent
function of the state variables and which is formulated
have a global minimum at this equilibrium point. If the tim
derivative of this potential function is always negative, i.
its value monotonically decreases with time, the system c
verges to the minimum of the Lyapunov function. Since,
definition, the minimum is the equilibrium point, global st
bility of the system is proven. For a nonlinear system
Lyapunov function candidate can be derived from the line
ized system~e.g.,@13#!. The candidate function,Ln , for the
linearized dynamical system is:

Ln5xB,n
T PxB,n . ~A4!

To obtain negative time derivatives, the matrixP has to sat-
isfy the equation

ATPA2P52I . ~A5!

A is the system matrix of Eq.~A1! and I is the identity
matrix. For the discretized system, the value ofLn must con-
tinuously decrease whenxB,n is recursively iterated through
Eq. ~1!. Thus, aDL can be defined between two success
impacts n and n11 of ball and racket:DL5Ln112Ln

5xB,n11
T PxB,n112xB,n

T PxB,n , where the nonlinear system
Eq. ~1! must be inserted forxB,n11 . For any statexB,n , DL
may serve as a measure of how quickly the ball will co
verge to the stable equilibrium point. While negative valu
of DL indicate thatxB,n lies in the basin of attraction, a
single positiveDL characterizesxB,n as unstable.

Using numerical optimization analysis it is possible
assess these stability properties by simulating the dynam
of the racket bouncing system given by Eq.~1!. At time t
50 an equilibrium point was defined to be at the impa
position, xR50, and the bouncing period was set tot
50.4 s. The scaling relationh ensures that these values c
be chosen arbitrarily without losing generality of the resu
The locally relevant section of the racket trajectory arou
the equilibrium point was modeled as a sixth-order polyn
mial in time ~the order 6 was empirically determined to giv
sufficient accuracy for the given purpose!: xR(t)5c01c1t
1c2t21c3t31c4t41c5t51c6t6.

For the given impact conditions,xR(t50)50, c0 must be
zero. The constantc1 is also determined, because the rack
velocity at impact is fully determined by the ballistic fligh
and the coefficient of restitution. At impact the second d
rivative of the polynomial equation isẍR(t50)52c2 . This
acceleration was set to 20 different values, taken from
range of local stability. The goal of the optimization was
adjust the constantsc3 to c6 for each of the 20ẍR(t50) to
achieve the largest and steepest basin of attraction for
equilibrium point. Values ofDL were calculated by starting
the ball at 2500 different initial conditions in the vicinity o
the equilibrium point. The sum of all 2500DL ’s for a given
2-7
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set of parameters,SDL, was defined as an operational me

sure quantifying stability for eachẍR(t50). The ball’s ini-
tial conditions were determined by different deviations fro
the impact time,t50, and impact velocities around the equ

librium point of ẍR . The range of the initial values was cho
sen to cover an appropriately large neighborhood around
equilibrium point, but, as this calculation aimed to give re

tive evaluations ofẍR , the actual range limits could be cho

sen freely: t initP@20.18t,10.18t#, ẋB, initP@24 ms21,
21 ms21#. The initial conditions were obtained by discreti
ing the intervals into 50 values each. The optimization w
n-
-

. E

vio

ep

01190
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performed with Powell’s conjugate gradient method@14#.
Figure 3 shows the numerical results ofSDL as a func-

tion of ẍR(t). Note that smallSDL correspond to high glo-
bal stability. As the trajectory of the racket corresponding
each of the differentẍR(t) was optimized to obtain maxima
stability, the results express the best possible case for e
ẍR(t). Stability is closely related to variability, since weak
stable states are accompanied with larger fluctuations
highly stable states and have longer relaxation times w
perturbed. Therefore, the variability ofẍR,n should increase
proportional to the numerical estimate of the global stabi
index,SDL.
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