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Table. Main characteristics of studies since 2010 about different algorithms for gait-event estimation using wearable 

inertial sensors. a: acceleration; ω: angular rate; B: magnetic field. 1, 2, 3: number of sensor’s dimensions; HS: heel 

strike; TS: toe strike; HO: heel off; TO: toe off; c: comfortable; f: fast; s: slow; ?: not reported. 

 
Ref. Sensor Number of subjects Foot 

drop 
Detected gait event Algorithm Real-time Speeds 

  Healthy Impaired  HS TS HO TO    

[1] a3 6 – – ✓ – – ✓ Symbolization ? c  s 

[2] ω1 7 – – – – – ✓ Rule-based – c 

[3] a3 ω3 – 1 ✓ – – – ✓ Rule-based Adjustable c 

[4] a3 6 – – – – ✓ – Peak detection ✓ c  f  s 

[5] ω 1 6 – – – – ✓ ✓ Hidden Markov models – c  f  s 

[6] ω1 10 10 – ✓ – ✓ – Hidden Markov models Adjustable c  f 

[7] a3 ω3 10 32 – ✓ ✓ ✓ ✓ Rule-based Adjustable c 

[8] a3 ω3 B3 10 – – – – – ✓ Decision tree Adjustable c  f 

[9] ω1 9 – – – – – ✓ Hidden Markov models – c  f  s 

[10] ω1 7 – – – – – ✓ Rule-based – c 

[11] ω1 10 – – ✓ – ✓ – Hidden Markov models Adjustable c 

[12] a3 10 10 – – – – ✓ Rule-based Adjustable c 

[13] a3 ω3 B3 10 30 – ✓ – – ✓ Rule-based – c  f 

[14] a3 ω3 5 – – ✓ – – ✓ Rule-based – c  f  s 

[15] a3  ω3  B3 7 1 – ✓ ✓ ✓ ✓ Rule-based ✓ ? 

[16] ω3 16 – – ✓ – – ✓ Rule-based ✓ C 

[17] a3 7 – – ✓ ✓ ✓ ✓ Rule-based – C 

[18] ω1 10 10 ✓ – ✓ ✓ – Hidden Markov models – c  s 

[19] a3 ω3 14 5 ✓ – – – ✓ Rule-based ✓ c  f  s 

[20] a3 ω3 B3 10 – – ✓ – – ✓ Rule-based – C 

[21] a3 ω3 10 32 – ✓ – – ✓ Hidden Markov models/SVM – c  f 

[22] a3 20 – – ✓ – – ✓ Time-frequency analysis – c  f 

[23] a3  ω3  B3 2 – ✓ ✓ – – ✓ Cycle-extremum/Threshold update ✓ ? 

[24] a3 20 – – ✓ – – ✓ Rule-based – c  f 

[25] a3 11 – – ✓ – – ✓ Rule-based – c  f 

[26] a3 ω3 B3 11 15 – ✓ – – ✓ Peak detection – c 

[27] a3 ω3 B3 57 – – ✓ – – ✓ Rule-based ✓ c 
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Information about the additional subject with foot drop gait abnormality in the open dataset 

(https://doi.org/10.6084/m9.figshare.7778255) 

 

One female subject with a foot drop gait abnormality voluntarily participated in this study. Her foot drop 

abnormality was at the left side of the body and it was caused by congenital cerebral palsy. At the time of evaluation, she 

was 25.2 years of age and had 50.0 kg of body mass, 161.0 cm of height, and 19.29 kg/m2 of body-mass index. For this 

subject, there are data for 496 gait strides, with stride lengths varying from 1.03 m to 1.48 m and walking speeds varying 

from 0.85 m/s to 1.77 m/s. In the open dataset her data are identified as subject ‘00’ (the other subjects are identified 

from ‘01’ to ‘22’).  

 

 

Figure 1. Violin plots (boxplots plus kernel density estimations) for the subject with foot drop from the open dataset for 

the gait variables: stride duration, support duration, stride length, and speed, calculated using the data from the force-

sensitive resistor under the right foot for the different walking speeds. The numbers shown at the top of each column 

indicate the total number of gait strides available in the dataset at each speed (and used to generate these plots). For each 

variable, the curve represents an estimation of the data distribution, the vertical black line represents the interval for 95% 

of the data, the black box represents the interquartile range, and the central dot represents the median value. The 

horizontal red line represents the median value across the 22 healthy subjects. 
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Figure 2. Mean ± 1 standard deviation for the subject with foot drop (red and blue) from the open dataset, compared to 

mean ±1 standard deviation across the 22 healthy subjects (gray) for the measured signals: tibialis anterior 

electromyographic activity (EMG TA), three-dimensional acceleration (Accel.), and angular velocity (Ang. Vel.), over 

the left and right gait cycles walking at the slow speed (see article for the axes convention). The mean ± 1 standard 

deviation termination of the gait support phase, indicated by the LTO or RTO events, are shown by the vertical lines and 

shaded areas of the plots. The gait events were determined using the data from the force-sensitive resistor under the right 

and left feet. The abbreviations LHS, RHS, LTO, and RTO denote the gait events: left and right heel strike and left and 

right toe-off, respectively. These curves are based on a total of 160 gait strides.  

Slow speed 
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Figure 3. Mean ± 1 standard deviation for the subject with foot drop (red and blue) from the open dataset, compared to 

mean ±1 standard deviation across the 22 healthy subjects (gray) for the measured signals: tibialis anterior 

electromyographic activity (EMG TA), three-dimensional acceleration (Accel.), and angular velocity (Ang. Vel.), over 

the left and right gait cycles walking at the comfortable speed (see article for the axes convention). The mean ± 1 standard 

deviation termination of the gait support phase, indicated by the LTO or RTO events, are shown by the vertical lines and 

shaded areas of the plots. The gait events were determined using the data from the force-sensitive resistor under the right 

and left feet. The abbreviations LHS, RHS, LTO, and RTO denote the gait events: left and right heel strike and left and 

right toe-off, respectively. These curves are based on a total of 160 gait strides.  

Comfortable speed 
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Figure 4. Mean ± 1 standard deviation for the subject with foot drop (red and blue) from the open dataset, compared to 

mean ±1 standard deviation across the 22 healthy subjects (gray) for the measured signals: tibialis anterior 

electromyographic activity (EMG TA), three-dimensional acceleration (Accel.), and angular velocity (Ang. Vel.), over 

the left and right gait cycles walking at the fast speed (see article for the axes convention). The mean ± 1 standard 

deviation termination of the gait support phase, indicated by the LTO or RTO events, are shown by the vertical lines and 

shaded areas of the plots. The gait events were determined using the data from the force-sensitive resistor under the right 

and left feet. The abbreviations LHS, RHS, LTO, and RTO denote the gait events: left and right heel strike and left and 

right toe-off, respectively. These curves are based on a total of 160 gait strides. 

Fast speed 
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