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Bouncing a Ball: Tuning Into Dynamic Stability
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Rhythmically bouncing a ball with a racket was investigated and modeled with a nonlinear map. Model
analyses provided a variable defining a dynamically stable solution that obviates computationally
expensive corrections. Three experiments evaluated whether dynamic stability is optimized and what
perceptual support is necessary for stable behavior. Two hypotheses were tested: (a) Performance is
stable if racket acceleration is negative at impact, and (b) variability is lowest at an impact acceleration
between —4 and —1 m/s’. In Experiment 1 participants performed the task, eyes open or closed,
bouncing a ball confined to a 1-dimensional trajectory. Experiment 2 eliminated constraints on racket and
ball trajectory. Experiment 3 excluded visual or haptic information. Movements were performed with
negative racket accelerations in the range of highest stability. Performance with eyes closed was more
variable, leaving acceleration unaffected. With haptic information, performance was more stable than

with visual information alone.

Juggling several balls in the air is a rhythmic perceptual-motor
task that requires the precise timing of two hands’ catching and
throwing actions in continuous coordination with the balls’ trajec-
tories. The cascade pattern that beginners typically learn in their
first attempt to master the art of juggling involves two hands
catching and tossing three balls in the air. The hands and fingers
have to grasp one or sometimes two balls and throw one of them
while catching the other one with the opposite hand. However,
juggling can be performed in an infinite number of variations,
including bouncing the ball off the body, other objects, or the floor.
In all its variety, all of these skills have one feature in common:
The balls are contacted repeatedly so that they stay in the air.

One approach to understanding the coordination demands of this
complex skill was advanced by Schaal, Sternad, and Atkeson
(1996; Sternad, 1998, 1999). Their entry into understanding the
coordinative principles of juggling (or, more generally, rhythmic
ball manipulation) was to look at a single-handed bouncing of one
ball with a racket. The advantage of this reduction of the skill is the
elimination of complex finger and hand movements that pose
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challenging questions in themselves. Moreover, extended ball han-
dling where energy is actively taken out or injected into the
trajectory need not be considered. Even with this considerable
simplification, the major questions of ball interception can still be
addressed. To juggle or bounce a ball rhythmically in the air
requires the fine control of the vertical movements of the racket in
order to hit the ball with the appropriate velocity and acceleration
at the right place and the right time. One additional rationale for
this methodological strategy was that, in this form, the skill closely
resembled a model of a bouncing ball, which has been repeatedly
analyzed in the literature on nonlinear dynamics (Guckenheimer &
Holmes, 1983; Tufillaro, Abbott, & Reilly, 1992). The dynamical
system of a ball bouncing on a planar surface has been used as an
example to demonstrate features of a nonlinear system displaying
the typical characteristics of stable fixed points, bifurcations, and
a period doubling route to chaos. Variations of this model still
provide challenges for mathematicians and nonlinear dynamicists.
The question pursued by Sternad, Schaal, and colleagues (Schaal
et al., 1996; Sternad, Duarte, Katsumata, & Schaal, 2000; Sternad
& Katsumata, 2000) was whether humans, when performing rhyth-
mic ball bouncing, are guided by stability properties as identified
by analyses of the nonlinear model.

In designing a task that was in deliberately close correspondence
to the physical model of the one-dimensional vibratory ball-table
system, Schaal et al. (1996) found support for their hypothesis that
humans attune to the period-one attractor where ball and racket
cycles are in a stable one-to-one relationship. This coordination
strategy has the advantage that perturbations passively converge to
the stable attractor, which might potentially alleviate the need for
active error corrections. This strategy stands in contrast to the one
advanced by the classical approach of control theory in which even
the smallest deviations of a ball trajectory would have to be
compensated for by an explicit change of the actuator trajectory.
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Such a control strategy has the disadvantage of demanding a high
computational load on the controller, and it runs counter to the
intuitive ease with which humans perform such tasks. In contrast,
by exploiting the dynamically stable regime identified by the
physical model of the vibratory ball-table system, there would be
no need for such fine-grained error corrections. It is therefore
advantageous for the performer to stay in tune with the dynami-
cally stable solution. This is not to imply, however, that perceptual
information should not be expected to also play an important role.
Unlike the simulated vibratory ball—table system, the human action
system is intrinsically variable. As a result, the acceleration and the
orientation of the racket at impact are likely to vary from contact
to contact, leading to self-inflicted deviations of the ball trajectory.
Only if these deviations become too large do sensory-based cor-
rections have to be made.

The theoretical perspective adopted here assumes that human
movements are governed by attractor properties defined by the
actor—environment system as a nonlinear dynamical system. The
hypothesis motivating this research is that humans attune to and
use stability properties of the task system and thereby find poten-
tially more efficient movement solutions. In a broader and more
historical context, this study can be viewed as an example dem-
onstrating the propositions as laid out by Fowler and Turvey for a
theory of skilled actions as early as 1978. In this programmatic
article, the authors integrated propositions by Gel’fand and Tsetlin
(1962, 1971), Bernstein (1967), Greene (1967, 1972), and Gibson
(1966, 1979), and they provided a framework that implicitly or
explicitly has influenced a wide spectrum of experimental re-
search. The fundamental conceptual claims for a theory of acqui-
sition and performance of skilled activity are threefold: The min-
imal system of analysis should be an event, encompassing both the
actor and the environment as the necessary support for movements.
The level of description should be course-grained and compatible
with the actor’s self-description and the environment. In forming a
controllable system, or a coordinative structure, the actor identifies an
organizational invariant by which the many degrees of freedom of the
task are constrained. Gel’fand and Tsetlin (1962, 1971) proposed that,
as such, the problem of coordination is well-organized: The variables
indigenous to the specific task can be partitioned into essential and
nonessential ones. Essential variables determine the topology of the
solution. If an essential variable is identified, the actor can success-
fully search for optimal solutions in performance.

This early work has found substantial support because nonlinear
dynamics has been further developed and has provided a host of
formal tools to analyze the problem of coordination. Yet, although
this thinking has become influential for many lines of research,
few studies have explicitly captured the task with its relation
between the actor’s performance and environment and have iden-
tified candidates for the essential variables. We believe the re-
search we report in this article makes such a contribution.

Overview

The previous study by Schaal et al. (1996) demonstrated, in a
highly constrained experimental task, that humans do indeed at-
tune to the dynamic stability properties of the vibratory ball-table
system by optimizing the variable “acceleration at impact.” In our
research, we asked whether these results generalize to a less
constrained ball bouncing task. To set the stage, we briefly review
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the modeling approach as developed and modified for studying
human ball bouncing and summarize the previous results by
Schaal et al. (1996). In extension of these findings, we present
three experiments that test the robustness of the previous results.
Central to a task-based analysis is an analysis of the perceptual
contributions in establishing a certain coordinative regime. There-
fore, the second major goal of this study was to examine the
perceptual support that gives rise to dynamically stable behavior.
Candidates for perceptual support are visual information about the
ball trajectory and haptic information about the ball impact.

We present three experiments with these two goals: In Experi-
ment 1, we relax the experimental constraints of the task by
allowing participants to perform realistic racket actions to test the

“generality of the hypothesized strategy and the model. Further-

more, we explore the role of visual information and pursue the
question of whether, in support of this stable control, anticipatory
or corrective tuning through visual information can be traced.
Experiment 2 goes one step further in generalizing the task and
removes constraints on the ball trajectory to approximate the
conditions of free ball bouncing. Experiment 3 focuses on the
question of what kind of perceptual information is necessary to
achieve a dynamically stable coordination strategy. We asked to
what degree a dynamically stable strategy is challenged and po-
tentially supplemented by alternative control strategies when se-
lected perceptual information is withheld.

The Model

Bouncing a ball with a racket is modeled as a planar horizontal
surface performing periodic movements in one vertical dimension
impacting a ball repeatedly. This kinematic model is similar to the
already classical model of the vibratory table bouncing a particle
(Celaschi & Zimmermann, 1987; de Oliveira & Goncalves, 1997;
Guckenheimer & Holmes, 1983; Hongler, Cartier, & Flury, 1989;
Kowalik, Franaszek, & Pieranski, 1988; Pieranski & Bartolino,
1985; Pieranski, Kowalik, & Franaszek, 1985). A key difference
between the studies in the mathematical literature and our ap-
proach is that in the human experiments the surface’s movements
have a significant amplitude and are not purely sinusoidal such that
the often applied “high bounce” approximation is inadequate. This
approximation in the derivation of predictions assumes that the
table amplitude is negligible relative to the ball amplitude, and,
therefore, assumes invariant positions of the ball-table impact with
symmetric parabolic flight trajectories of the ball. Because our
focus is on the table, or rather racket motions, we generalize our
model equations to allow for arbitrary periodic motion of the
racket. The assumptions in the formulation of the model therefore
are as follows: arbitrary periodic motion of the surface, ballistic
flight of the ball in a constant gravitational field, instantaneous impact
modeled by a coefficient of restitution, and a mass of the racket that
is considerably larger than the ball’s such that the racket trajectory is
nat affected by the impact. The equations of motion for the ball are
written in a discrete form in reference to the nth impact (see Appendix
A for the derivation of the motion equations):

Xgn = Xgrn

Xpnr1 = — \/[(1 + a)ig, — C‘xl;.n]2 — 28(xpnsr1 = Xga)

0.5g2 = [(1 + @)ip, — kgt + (Xppet — Xpa) = 0. (1)
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In this equation, X5 ,,, Xg . X5 %x . are the vertical positions and
velocities of ball and racket at the nth impact, the subscripts B and
R refer to the ball and racket respectively, « is the coefficient of
restitution, g is the acceleration caused by gravity, and 1, denotes
the cycle time which is reset to zero at each impact (see Figure 1).
During the impact, energy is lost and the system is dissipative.
Therefore, according to Liouville’s theorem, the system displays
asymptotic stability (Lichtenberg & Lieberman, 1982). These
equations are not solvable analytically because the racket’s posi-
tion at impact n + 1 is not known. However, stability analyses can be
applied to find criteria under which the system achieves stable solu-
tions. The stable solution of interest is the so-called period-one solu-
tion, which has one ball cycle for one racket cycle and corresponds to
the task in our experiments. Other solutions of the impact map, like
period-two or chaotic solutions, are not considered here.

Provided that the racket’s velocity at impact xg, exceeds a
minimum value to compensate for the energy loss at impact, local
linear stability analysis determines at least one asymptotically
stable fixed point (Strogatz, 1994; for details, see Appendix B and
Schaal et al., 1996). The criterion for stability is that the racket’s
acceleration at impact ¥ has to satisfy the nontrivial condition

(1+a?)
—2g(1—_-+_-W<XR<O. 2)

Because g and « are constants, ¥ is the major variable that
determines the stability of the solution. Assuming normal gravita-
tional conditions, and setting « = .42, which is the condition of
Experiment 1, the range for stability is £, € [~11.44, 0 m/s?). I
a = .71, which is the condition of Experiment 3 and the previously
published study by Schaal et al. (1996), the range of stability is
¥ € [—10.09, 0 m/s%].

This is a large range and does not yet provide very precise
quantitative predictions concerning stable performance. Conse-
quently, we performed a nonlocal Lyapunov stability analysis on
Equation 1 (for details, see Appendix B). The degree of stability
for 20 values of %, at equal intervals within the stable range is
numerically determined. Figure 2 shows the results of these anal-
yses for three values of the o parameter and g = 9.81 m/s®. The
third value, & = .52, was chosen to calculate predicted curves for

X% @

time

Figure 1. Sketch of the racket-ball system and the definition of vari-
ables: xg,,, Xp . X5 and Xg , are the vertical positions and velocities of ball
and racket at the ath impact; the subscripts B and R refer to the ball and
racket, respectively.
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Figure 2. Results of nonlocal stability analysis, calculated for different
values of «. The range of stable X, is determined by Equation 2. The
numerical results for stability are interpreted as different levels of variabil-
ity in the data. Units are arbitrary.

conditions similar to Experiment 2. As dynamic stability is closely
related to variability, this numerically derived stability index
serves as prediction for performance variability of the bouncing
trials. Figure 2 depicts a central region where stability is highest or
variability is predicted to be lowest. The smaller the coefficient of
restitution, the larger the region of very high stability.

Three simulations of Equation 1 in three different regimes,
presented in Figure 3, illustrate the effect of acceleration on the
solutions of the model system. A perturbation is applied after the
second cycle to show how the model system equilibrates or di-

x>0

l
perturbation

Figure 3. Simulation of Equation 1. The three runs demonstrate (A) the
unstable regime, %, > 0, where perturbations amplify; (B) the neutrally
stable regime, X, = 0, where a perturbation remains unchanged; and (C)
the stable regime, ¥; < 0, where perturbations converge back to the
attractor.
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verges: (A) When %, = 0, the solutions are neutrally stable, and
any small difference in initial conditions remains unchanged; (B)
when %, > 0, the solutions are unstable and small perturbations
amplify and lead to a loss of the patiern; (C) when % € [—11.44,
0 m/s?], small perturbations die out and the trajectory converges
back to the stable solution.

From the two stability analyses, two major conclusions can be
summarized, and they serve as two predictions for the following
experiments: It is hypothesized that participants perform the task with
a strategy that makes use of stability properties. If they attune to
stability, then the following quantitative predictions can be made:

1. Dynamically stable performance is obtained if X is negative.
For the specific condition of Experiment 1, where a = .42, %z €
[—11.44, 0 m/s?]. For the specific condition of Experiment 3,
where a = .71, % € [—10.09, 0 m/s?].

2. The degree of stability is a nonlinear function of %, where
the highest degree of stability is found in an approximate range
%p € [5, —2 m/s?] for Experiment 1 and % € [3.5, —1.5 m/s’]
for Experiment 3. By assumption, we expect the Jowest variability
to be found in this range.

These predictions are not trivial. Adopting the standpoint that
human movements maximize efficiency, participants should con-
tact the ball at the moment of peak velocity, corresponding to X, =
0. Because velocity at impact is the sole determinant for ball
amplitude, the moment of peak velocity in the racket trajectory
leads to the highest possible amplitude given one racket trajectory.
If the ball is impacted at the decelerating trajectory segment, the
peak velocity has to be higher to achieve the same ball amplitude.'

In the previous studies Sternad and Schaal confirmed these
predictions (Schaal et al., 1996; Sternad, 1998, 1999; Sternad et
al., 2000). The experiment was performed with a special apparatus
where participants were instructed to bounce a ball rhythmically
with a steady ball amplitude by moving the handle of a 1-m-long
lever arm with a racket attached at the other end. A pantograph
linkage ensured that the racket’s surface remained strictly horizon-
tal. The ball was affixed to a l-m-long boom to confine its
trajectory to an approximately linear path. Hand, racket, and ball
trajectories were thereby strictly confined to one vertical dimen-
sion with the explicit objective to keep close correspondence to the
model. The results for six participants verified that mean X, across
the impacts of one trial were in the range that predicted optimal
stability. The variability associated with participants’ mean g
values followed the predictions of the Lyapunov analysis.

Armed with this quantitative performance criterion, one can
subsequently pose this question: What perceptual information is
necessary to establish the desired task performance? The essential
variable %, can now constitute a benchmark for exploring which
kind of perceptual information establishes the link between the
actor and the environment. Principal sources of information un-
doubtedly arise from the haptic and visual modalities. Many stud-
ies have been dedicated to assess what features of the ball trajec-
tory are necessary for interception of the ball (Amazeen, Amazeen,
Post, & Beek, 1999; van Santvoord & Beek, 1994). There is also
empirical evidence that information about kinetics, specifically in
collision events, can be obtained from kinematic (i.e., visual)
information (Bingham, 1995; Michaels & de Vries, 1998; Runeson
& Frykholm, 1983; Runeson & Vedeler, 1993; Todd & Warren,
1982). Is visual information alone sufficient to establish a stable
regime? On the other hand, the haptic system has been shown to be
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an extremely sensitive perceptual system that uses the stress—strain
patterns exerted onto muscle tissue including muscular effort in
order to perceive very subtle and distant properties of the object
that is contacted. Carello, Thuot, Anderson, and Turvey (1999)
demonstrated that participants can detect the location of the “sweet
spot” of a tennis racket by haptic information. In the experiment,
blind-folded participants wielded a tennis racket and could reliably
report the distance of the racket’s center of percussion (sweet spot)
from the hand. This and a series of similar studies highlight the
ability of the haptic system of perceiving geometric (distance) and
dynamic (center of percussion) properties of hand-held objects.
These previous studies motivated us to therefore ask to what
degree is visual and haptic information involved in establishing

"a dynamically stable regime. How does the stable performance

break down when participants are partially deprived of such
information?

Experiment 1

Qur first goal in Experiment 1 was to test whether the two
central predictions of the model were satisfied when the task
allowed more natural movements of the arm and the racket. In the
previous experimental setup participants moved a handle of the
apparatus that only allowed rotational movements around the
single-degree-of-freedom elbow joint in the sagittal plane. More-
over, upward movements of the racket corresponded to downward
movements of the hand moving the handle. Because of the pan-
tograph linkage, any tilting of the racket was excluded. Could it be
that this apparatus imposed such tight and specific constraints that
participants had no choice but to bounce the ball at negative
accelerations? To test whether the predicted stable strategy was
maintained in a less constrained juggling task, we removed the
pantograph apparatus and participants performed the bouncing
movements holding a tennis racket in their hands, with no explicit
constraints on the arm or racket movements. However, the ball still
remained attached to a boom and was thereby confined to an
approximately linear path, so the task remained essentially limited
to one vertical dimension and retained sufficient correspondence to
the model.

Our second goal in this study was to investigate the role of
visual information for a dynamically stable performance of ball
bouncing. With the objective of a task-based analysis, where
coordination is assumed to arise from the relation between actor
and environment, our immediate question was the following: What

! The biomechanical literature on ball hitting or kicking typically studies
single contacts that aim to maximize ball amplitude or precision, such as in
baseball or tennis. Therefore, these analyses aim to identify how speed is
maximized at the distal end of the kinematic chain of the limb. The
effectiveness of the summation of segmental velocities is evaluated by the
manner with which each body segment moves with respect to the more
proximal segment (Elliott, 2000; Herring & Chapman, 1982; Hubbard,
Covarrubias, Hagenau, & Jenssen, 1989). The central requirement of a
periodic impact in our ball bouncing task imposes different criteria for the
optimal type of impact. It is therefore important to point out that the
predictions from the performed stability analyses only make predictions
about rhythmic bouncing, hitting, or kicking. Transfer of the present
predictions to single impacts as in tennis, where the nonidentical nature of
each successive impact is of primary importance, is not valid.
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kind of perceptual information establishes the link between actor
and environment? Our first step in this direction was modest: We
tested whether visual information about the ball and racket move-
ments was needed to ensure the same dynamically stable behavior.
Given that when a stable strategy is established performance can
theoretically be successful without corrective adjustments, the
expectation was that performance should be equally possible when
visual information was partially withheld. If this was not the case,
then this result speaks to the presence of additional corrective
adjustments.

Method

Participants

Six participants (3 women and 3 men) from the undergraduate and
graduate student population of The Pennsylvania State University volun-
teered. Their average age was 31.7 years, and none of them reported any
arm injuries. All of the students had some experience with racket sports.
They signed an informed consent form in accordance with the Regulatory
Compliance Office of the university.

Apparatus and Materials

The bouncing movement was performed with a custom-made apparatus
that consisted of three measuremient parts: one potentiometer measuring the
vertical displacement of the racket, a second potentiometer that measured
the displacement of the ball, and an accelerometer that was attached to the
racket (Figure 4). To measure the vertical displacement of the racket, a thin
string was tied to the center of the racket surface. The other end of the
string was attached to a floor piece, which consisted of a wheel that rotated
around a horizontal axle, which was in turn fixed to a heavy steel floor
board (.41 m X .18 m X .02 m) weighing 30 kg. The string from the racket
was fixed to the wheel and was wound around because of a horizontally
located spring that turned the wheel to a resting position. Vertical move-

Potentiometer
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ments unreeled the string against a small resistance from the spring and
turned the wheel. A 10-turn potentiometer at the axle measured the turns of
the wheel and thereby the vertical displacement of the racket. A sufficient
degree of tension on the string was obtained through 2 spring that could be
adjusted manually by tuming it so that the racket movements neither
confronted too much resistance nor created any slack in the string. As the
position of the racket was directed at the ball (which was at a constant
position in the horizontal plane), the racket’s movements were always close
to vertical in successful bouncing. Before data collection the experimenter
ensured that the wheel was positioned directly undemeath the sweet spot of
the racket.

The ball was fixed to a 1.12-m-long tube made of carbon fiber with a
diameter of 20 mm and wall thickness of 0.5 mm. This material was chosen

_to ensure minimal weight of the boom combined with maximal stiffness so

that the tube and the attached ball would not vibrate after impacts. The tube
was connected to a pivot on the vertical stanchion. At the short end of the
boom (.15 m), a weight of 0.20 kg was attached to offset the weight of the
tube. This corresponded 10 a change of gravity for the ball’s ballistic flight.
Change of this weight allowed for the experimental manipulation of gravity
in the previous experiment. Because of the rigid linkage of the ball to the
boom, the trajectory of the ball described a curvilinear path. In first
approximation the ball’s trajectory waversed a *30° angle such that the
ball’s trajectories were treated as linear. The second potentiometer was
attached to the hinge joint between boom and stanchion and measured the
rotational movements of the boom. To obtain data for the ball's move-
ments, we converted these rotational displacements into vertical move-
ments of the ball. At the base of the racket’s handle a uniaxial accelerom-
eter (Coulbourn Instruments, Allentown, PA) was affixed. All analog data
were digitized using a 16-bit A/D board (National Instruments, Austin,
Texas) and sampled at 500 Hz using software developed in LabView
(National Instruments, Austin, Texas). The three separate signals were time
aligned by the software. The ball was a squash ball, and the racket was a
regular tennis racket with an average-sized frame and normal string ten-
sion. The coefficient of restitution « of this ball and racket system was

Sl

s Accelerometer

Potentiometer

v

computer

Figure 4. Experimental apparatus of Experiment 1. See the text for details.
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determined empirically by recording a range of ball velocities before and
after the impact. For the first experiment, o = .42.

Procedure and Design

At the beginning of each experimental session, the participants were
asked to practice the task for approximately 5 min, which proved sufficient
to get acclimated to the apparatus, the weight of the racket, and the range
of amplitudes that were possible with the apparatus. Participants were
instructed to bounce the ball at a constant ball amplitude within each trial.
In a given trial, participants were instructed to bounce the ball at either low,
medium, or high ball amplitude rhythmically throughout one trial. During
the practice, participants were asked to select their own set of three
distinguishable amplitudes. No target amplitudes were given visually.
Medium amplitude was defined to be the height at which each participant
preferred to juggle the ball. Low amplitude juggling was described to the
participants to be “as low as possible, without letting the ball merely
vibrate on the racket” and, thus, it still required active control over the ball.
High amplitude was defined as a high but still comfortable range. When
bouncing the ball high, participants were made aware that they should not
get into the curvilinear range of the ball’s trajectory, which was at an
approximate elevation of 0.50 m measured from the horizontal position of
the boom.

The experimental session consisted of two blocks. In the first block
participants performed the task with their eyes open, whereas in the second
they performed with their eyes closed. Three trials at each amplitude
condition were presented in random order. In the second block participants
were asked to close their eyes only after having established a stable
movement pattern. The two blocks with the two perceptual conditions were
always presented in the same order because the eyes-closed condition was
expected to be more difficult. Al trials were performed with the racket held
in the dominant hand. Each of the 18 irials lasted 30 s, and the total
experiment lasted approximately 25 min. Participants could rest their arm
between trials whenever they wanted. Each trial began with the participant
starting the movement, and when the participant felt that a stable pattern
was established, he or she signaled to the experimenter and the data
collection was started. If a pardcipant lost the pattern (e.g., the ball
remained on the racket), the trial was repeated. This happened only twice.

Data Collection and Reduction

The position data of the racket were low-pass filtered using a zero-lag
second-order Butterworth filter with a cutoff frequency of 12 Hz. This
cutoff frequency was chosen to eliminate measurement noise while pre-
serving modulations in the participant’s performance. The signal was
differentiated with a simple difference algorithm and subsequently filtered
again using the same filter parameters. Of central interest was the value of
acceleration at the moment of the racket’s impact with the ball. The signal
from the accelerometer was not filtered because the discontinuous point of
impact was of focal interest. The determination of this point was straight-
forward because the acceleration had a sharp discontinuity at the moment
of impact. The value before this discontinuity was picked as an estimate of
the acceleration of the racket just before impact.

To capture more systematic features within each cycle of the racket and
ball trajectory, we defined two further measures on the basis of the
continuous trajectories.

Harmonicity. We defined a so-called harmonicity measure X to capture
the racket trajectory’s deviation from a harmonic wave. To this end, we
analyzed the racket trajectory in phase space, defined by both its state
variables position and velocity. First, phase 8, and radius r were calculated
from the limit cycle of the racket trajectory following standard methods
(for more detail, see Sternad, Turvey, & Saltzman, 1999):

0z = —amtan[ -
Xp — Xg

—_— | +m,
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where Xp, X and T refer to the average position, velocity, and period of
one trial’s trajectory, respectively. Phase 6 was defined to be zero at the
maximum position of the racket trajectory. The phase for the ball rajectory
6, was defined in analogous fashion as zero at the maximum of the ball’s
trajectory. The radius r(r) in phase space of the racket trajectory was
computed as

)= \/FR + (kT 277)>.

As a harmonic wave traverses a unit cycle in phase space, we captured
the degree of harmonicity of the racket trajectory’s periodic motion as its
deviation from a unit circle. Then, we normalized r to 1 and determined A
as the difference between r and 1. To obtain a characteristic profile of A per
cycle, we divided the r signal into cycles of 27 length as captured by their

_ phase and plotted r as a function of the cycle’s phase. We divided each

cycle into 36 bins of 271/36 radians length. For each bin, the X values of all
cycle segments were averaged and their variances (V) determined. To
facilitate a quantitative comparison across conditions, we defined the
cumulative measure A,z as follows:

36
>V
Ause = T

Relative phase. We determined the relative phase between ball and
racket movement. The basis for this measure were the time series of both
65 and 6. Relative phase ¢ was defined as ¢ = 6; — 6 mod 27.

As above, the continuous time series of ¢ was segmented into cycles on
the basis of 85, divided into 36 bins and averages and standard deviations
determined for each bin. The average ¢ per cycle captured the mean
relative behavior throughout a cycle. Furthermore, and similar to Aysg, We
quantified fluctuations around mean ¢ in terms of a root mean square
measure ¢pcp”

36
2 Vo
buse = n—%“

Results and Discussion
Task Criterion: Ball Amplitude

Our first aim was to ascertain whether participants followed the
instructions and actually performed the ball bouncing task with
three different and relatively invariant ball trajectories. Trial av-
erages of the relative ball amplitudes A, and their standard devi-
ations SD(Ag) were submitted to a 3 X 2 X 3 repeated measures
analysis of variance (ANOVA) with the factors amplitude, percep-
tua! information, and repetition. Results confirmed that partici-
pants performed the task at three distinguishable amplitudes, F(2,
10) = 128.48, p < .0001, where the mean peak heights were .36 =
04m,.18 £ 03 m, and .10 * .02 m. A significant main effect for
perceptual information indicated that in the eyes-closed condition,
the amplitudes were lower than in the eyes-open condition, F(1,
5) = 31.56, p < .01 (see Table 1). An interaction between visual
information and amplitude indicated that the differences between
the perceptual conditions were less marked for low amplitudes
compared to high amplitudes, F(2, 10) = 17.24, p < .001.

The standard deviations around AgSD(Ag) were submitted to
the same ANOVA. Variability was highest for the high amplitude
conditions and decreased successively for the medium and low
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Table 1

Means (and Standard Deviations) for Racket and Ball Periods
T and Ty (in Seconds) and Amplitudes A and Ap

(in Meters) in Experiment 1

Condition Tx Tg Agp Ap
Open eyes
High 0.82(0.04) 0.82(0.04) 032(0.03) 0.36(0.04)
Medium 0.60 (0.03) 0.60(0.03) 0.18(0.02) 0.18(0.03)
Low 0.46 (0.04) 046(0.05 0.10(0.01)  0.10(0.02)
Closed eyes
High 0.74(0.04) 0.74(0.04) 0.26(0.02) 0.27(0.04)
Medium 0.56 (0.03) 056(0.04) 0.16(0.02) 0.15(0.03)
Low 046 (0.04) 047(0.06) 0.10(0.01) 0.10(0.02)

amplitude conditions, F(2, 10) = 20.36, p < .001. There was no
effect for perceptual information, which indicated that the accu-
racy in following the task instructions was similarly good with and
without visual information. Most likely, this was due to the highly
predictable ball path. Haptic and auditory information may play
an important complementary role in achieving a regular ball
amplitude.

Model Predictions: Racket Acceleration at Impact

The variable that directly addressed the central question of this
study was the acceleration of the racket at impact %z. As derived
from the model above, X served as the criterion whether partici-
pants performed the bouncing movements with a parameterization
that provided dynamic stability. Figure 5A shows the trial means
of the six participants in all experimental conditions: All X, values
scattered across a range of —6.80 and +1.55 m/s?, with the overall
mean at ~3.16 m/s?. Six trials had X, in the positive range. The
superimposed line represented the model predictions from the
nonlocal stability analysis, showing that the approximate range of
i values with lowest predicted stability was approximately be-
tween —5 and —2 mv/s®. The scattergram and the inserted histo-
gram of X, values with its median at —3.40 m/s> confirmed that the
data were in good qualitative and quantitative agreement with the
predictions. Note that, again, positive values were possible and that
the predominance of negative X, was not a trivial finding. In
summary, this result confirmed the first prediction that participants
again bounced the ball with negative X, even when the task was
less constrained.

The next analysis assessed whether the mean X, values differed
between the experimental conditions, with a special focus on the
effect of the presence or absence of visual information. To this
end, all trial averages were submittedtoa 3 X 2 X 3 ANOVA with
the factors amplitude, perceptual information, and repetition. An
interaction between amplitude and perceptual information was
significant, F(2, 4) = 4.06, p = .051. This trend indicated that for
the eyes-closed condition all values were relatively similar,
whereas in the eyes-open condition the acceleration was signifi-
cantly more negative than in the high amplitude compared to the
low amplitude condition. The overall mean racket acceleration
differed significantly between the amplitudes, F(2, 10) = 8.37,
p < .01 (high: £, = —4.04 m/s?; medium: —3.24 m/s?; low: —2.22
m/s?). A second main effect was obtained for repetition, F(2,
10) = 7.96, p < .01, where the overall means decreased progres-
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sively: First trial: % = —2.84 m/s?; second trial: —3.24 m/s?; third
trial: —3.43 m/s?. The comparison between the two conditions
with visual information present or withheld was not significant
(p = .86). The first main effect is at first sight counterintitive. In
order to achieve higher ball amplitudes, higher velocities at impact
are required. However, participants appeared to have lost more
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Figure 5. SD(Xg) versus trial means of X, of Experiment 1. A: Trial
means of all participants’ acceleration of the racket at the moment of
impact are plotted against the standard deviations around each trial mean.
The different symbols represent the two perceptual conditions. The inserted
histogram shows the frequency of x, for different values of xz. The solid
line represents the predicted degree of stability as calculated from the
nonlocal Lyapunov stability analysis. (The simulations results were in
arbitrary units; therefore, the units were scaled to fit the experimental data.)
B: Variability estimates SD(A ) against %,. The different symbols represent
the 6 participants, showing that each participant had a preferred range in
the defined space.
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velocity; they were already decelerating when they impacted the
ball. From an efficiency standpoint, participants would be ex-
pected to perform high amplitude bouncing with impacts closer to
peak velocity in their racket cycle. Instead, participants chose to
increase the racket amplitude and then had to slow down the
upward movement from higher peak velocities, thereby requiring
higher decelerations. To confirm and further examine these within-
cycle features, we discuss more fine-grained analyses of the racket
trajectory below.

The second main effect concerning the effect of visual informa-
tion was important with respect to the second objective of the
experiment. Indeed, participants continued to bounce the ball with
the same strategy, choosing impacts at moments in the trajectory
where acceleration was negative. This suggests that visual infor-
mation did not play a significant role in detecting and maintaining
the stable regime. Recall, however, that in the present task, the ball
was affixed to a long boom and its trajectory was highly predict-
able. The only positional adjustment necessary for the racket was
in the vertical position—which, however, determined the value of
the acceleration at impact. More insights into these results are
provided by analyses of the continuous ball and racket trajectories.

The third main effect for repetition indicated that with increas-
ing practice of the task, participants chose increasingly more
negative racket accelerations (Figure 6). This result indirectly
speaks to the fact that with practice, participants gravitated toward
values that provided more stability.

Stability and Variability of Racket Acceleration

The next important question focused on the prediction that
dynamically stable solutions are accompanied by lower variability.
The degree of stability was operationalized by calculating the
standard deviations of the successive values of i throughout one
trial, SDx, The estimates of % and SD%. per trial were plotted
against each other in Figure 5A. The solid line represents the
relative stability associated with different values of Xz. Note that
the values on the ordinate of the prediction are in arbitrary units
from the numerical analysis (cf. Figure 2). Therefore, the predicted
curve was scaled into the data and does not allow a quantitative
comparison in the ordinate dimension. With this caveat in mind,
the data give a good qualitative fit of the predictions derived from
the model. To establish that the curve was more appropriate than
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Figure 6. Mean racket accelerations at impact for the three ball ampli-
tudes and the three trials per condition. The error bars denote standard
€rrors.
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a simple linear dependency, we also performed a second-order
polynomial regression. The 7 value of the fit was .31 and signif-
icant (p < .0001). The second-order coefficient was significant at
the 5% level, indicating that the scatter of data was better ac-
counted for by a curved fit rather than a linear fit. To further
emphasize that the variability in the performance in different trials
followed the stability predictions, we also plotted the SD(Ag)
against X, Figure 5B clearly shows that the scatter of data fol-
lowed the predicted U shape. The different symbols in the figure
denote the different participants (P1, P2, .. .).

The trial estimates of SDX, were submitted to the same
repeated-measures ANOVA as above. A two-way interaction be-
tween amplitude and repetition was significant, F(4, 10) = 3.19,

“p < .05, showing that SDx, decreased in trials with high to

medium amplitude but remained at the same level for the low
amplitude conditions. A main effect for visual information sup-
ported the intuitive expectation that the eyes-closed condition was
more variable than the eyes-open condition, dropping from .20
m/s? to .15 m/s?, F(1, 5) = 15.01, p < .05 (see Figure 5A).
Inspecting the individual condition averages also explained why
variability did not show the expected decrease over the three
repetitions. In the low amplitude condition, the variability did not
change across the repetitions. In summary, with respect to the
second question about the role of visual information, the actual
value of the critical variable did not change, but variability was
affected by the absence of visual information. This suggests that
visual information about the ball and racket was involved in
stabilizing the ball trajectory. To further examine how visual
information leads to changes in the racket trajectory, we next turn
to the analysis of the continuous time series.

Analysis of Continuous Trajectories: Harmonicity

All preceding analyses focussed on the analysis of the impact
alone; they directly tested the predictions, which were derived
from the analysis of the discrete model. Given the emphasis that
coordination implies a perceptual link between environmental sup-
port and the actor, we next ask how this stable regime is brought
about. Are there discernibie signs in the continuous racket trajec-
tory speaking to active corrective control? To scrutinize in what
way the racket trajectories differed throughout the cycle, we ex-
amined them in terms of their harmonicity, that is, the degree to
which they differed from a harmonic wave. The overarching goal
was again to detect differences in strategy across the different
manipulations as well as in trials deemed stable or unstable ac-
cording to the critical variable Xz.

Figure 7 shows the harmonicity measure A for six representative
trials in the six experimental conditions performed by 1 partici-
pant. As detailed in the Method section, A is graphed as a function
of the phase of the racket cycle 6;. Because of this plotting, the
successive cycles were normalized to 27 and pooled in 36 bins to
obtain an average profile. The error bars show standard deviations
for each of the 36 bins. Phase zero is at the maximum of the racket
trajectory. As evident from all six panels in Figure 7, A showed a
characteristic shape that was only modified in scale across the
amplitude variations. For large amplitudes the deviations from
harmonicity were most marked. For A, values larger than zero
imply that position and velocity, alone or in conjunction, were
increased. Conversely, A values smaller than zero, as observed in
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Figure 7. Harmonicity measure A in six combinations of conditions. The top three rials are trials performed
with eyes open (0). The bottom three graphs are trials performed with eyes closed (c). From left to right: high
(h), medium (m), and low (1) amplitude. The A, for each trial is listed on the top of each graph. The error bars

denote the standard deviations for each of the 36 bins.

the central part of the cycle, signify that position and velocity were
decreased. The peak of A at about 3/27 was coincident with the
moment of impact, indicating a marked deviation from a harmonic
cycle. The interval with negative A leading up to the peak was
possibly due to anticipatory adjustments before the impact. This
regular pattern is the signature of an asymmetric periodic trajec-
tory consisting of a slower and a faster portion. Interestingly, no
striking differences in shape were seen between the two perceptual
conditions, suggesting that visual information did not play a dom-
inant role in the task performance.

The summary measure A, was defined as the cumulative
difference between the trajectory and a harmonic wave in the
different experimental conditions. Using an ANOVA performed
on A, We obtained the following resuits: An interaction between
amplitude and visual information indicated that for high ampli-
tudes performed with eyes open, A, s Was significantly higher
than in all other conditions, F(2, 10) = 19.09, p < .0001. There
was a main effect of amplitude, corroborating the effect seen in
Figure 7 that in the high ball amplitude conditions A deviated more
strongly from a sinusoidal wave than in the medium and the low
amplitude conditions, F(2, 10) = 36.92, p < .0001. There was also
an effect of perceptual information, indicating that with their eyes
open participants tended to deviate more from a sinusoidal wave
than without visual information, F(1, 5) = 60.16, p < .001. In
summary, the racket trajectories deviated more from harmonicity
in high bouncing amplitudes compared to low amplitudes. When
participants had their eyes closed, they tended to move the racket

in a more harmonic fashion than when they had visual information
about the ball’s trajectory. This result is consistent with the earlier
result that on average, racket amplitudes were smaller when par-
ticipants had no visual information. That is, the difference in Ay;qp
between perceptual conditions may have been merely a by-product
of different magnitudes of racket amplitudes.

Relative Phase

Figure 8 shows the average relative phase ¢ per cycle and its
band of standard deviations plotted against 6, for the six different
experimental conditions performed by the same participant. In-
spection of the time course of ¢ immediately shows again that
there was a typical profile throughout one cycle, which was in-
variant for all six conditions. The profile varied around a mean of
— /2, which corresponds to the racket leading the ball by a quarter
of a cycle. The discontinuous change in ¢ around 3/2r is the
moment of impact. Note that both 8, and 6, were defined to be
zero at peak amplitude, which leads to this constant phase differ-
ence. Moreover, the two trajectories of ball and racket are differ-
ent, so ¢ is never a constant value. To better interpret the expected
shape of ¢, the model system, which consisted of a sinusoidal
racket trajectory and a parabolic flight of the ball, was simulated
and trajectories were generated. The insert in the top left graph
shows the simulated ¢ calculated from this model in the same way
as for the data. Assuming no change from sinusoidal motion, ¢
decreases in a nonlinear fashion up to the impact event. It changes
discontinuously at a racket phase close to 3n/2. Although ¢ of the
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Figure 8. Relative phase ¢ determined for the six combinations of conditions. The top three panels present
trials performed with eyes open (0). The bottom three panels present trials performed with eyes closed (c). From
left to right: high (h), medium (m), and low (1) amplitude. The error bars denote the standard deviations for each

of the 36 bins.

data closely follows the simulated trajectory for the first half of the
cycle, it deviates markedly for a quarter cycle prior to the impact.
This phase of the trajectory concurs with higher standard devia-
tions as can be read from the other five panels. This illustrates that
there is a crucial phase where the ball impact is prepared and
variability during this phase is higher.

To quantify whether there were differences in the relative phase
across conditions, we defined the quantity ¢,,s.. Conducting an
analysis of variance on ¢,,s;, we detected only one weak but
significant difference between the three amplitude conditions, F(2,
10) = 4.75, p < .05. It showed that the low amplitude had a
significantly higher ¢,,¢, than the medium and high amplitudes.

To conclude, Experiment 1 provided a number of resuits: The
first objective of the present line of experiments was whether the
simple mechanical model provided a robust framework to under-
stand the task of rhythmically bouncing a ball. The unambiguous
answer to this question is yes. In the majority of trials, the ball-
racket impact occurred in the decelerating part of the racket
trajectory, that is, in the dynamically stable regime as predicted by
the model. Moreover, across three repetitions, the acceleration
values changed toward ones that, according to the model, provided
greater stability. To further corroborate the relevance of these
predictions, the variability associated with different parameteriza-
tions concurred with the differential stability predictions.

The second focus of inquiry was directed to explore the role of
perceptual information in achieving this perceptual-motor task,
and especially how to perform it with a dynamically stable strat-
egy. The results gave a mixed picture: The comparison between

the eyes-open and eyes-closed conditions did not produce a dif-
ference in the racket acceleration. This suggests that dynamic
stability can be obtained by other kinds of perceptual information,
such as haptic information. On the other hand, there were differ-
ences in the variability measures in that the eyes-closed condition
was more variable. This result suggests that visual information,
when present, was used in either anticipatory or corrective fashion.
It appears that small deviations can be absorbed in the dynamically
stable regime but that larger deviations are compensated for on the
basis of visual information. Analyses of the continuous racket
movement profiles further suggested signs of anticipatory adapta-
tions. Both measures of harmonicity and relative phase between
ball and racket indicated that approximately a quarter cycle before
impact the trajectory clearly deviated from a harmonic wave,
indicating preparatory action for the ball contact. In the blind-
folded case, these anticipatory actions may rely on cycle timing.
Furthermore, variability around the mean relative phase and har-
monicity was increased, speaking to a fine-tuning prior to impact
(Bootsma & van Wieringen, 1990). However, no differences could
be found between the two visual conditions or between trials
performed with positive or negative acceleration. Given these
results, Experiment 1 was the departure point for two more exper-
iments in which we pursue the issues of the generalization of the
task and the role of perceptual information.

Experiment 2

One major result of Experiment 1 was that although the ball
bouncing task was less constrained than the model, participants
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again chose movement solutions consistent with the criteria for a
dynamically stable solution. The theoretical predictions of the
proposed model and the results obtained from the initial experi-
ment proved to be robust even when the impacting surface was not
strictly horizontal and the movement was performed with the
whole arm. Experiment 2 pursued this issue one step further and
removed more constraints on the task. The participants now per-
formed ball bouncing freely in 3D.

Method

Participants

Five right-handed individuals (3 men and 2 women) volunteered for this
experiment. Four of them were graduate students and 1 (a woman) was an
undergraduate student of The Pennsylvania State University. Their ages
ranged from 21 to 36 years (M = 29.8 years). Four of them had already
participated in the earlier experiment and were familiar with racket sports.
The only exception was the undergraduate student who had no prior
experience with racket sports outside the experiment. Before data collec-
tion, the participants gave their informed consent in accordance with the
University Regulatory Compliance Office.

Apparatus and Materials

The experiment used the same tennis racket with the attached acceler-
ometer as in Experiment 1. The central modification was that the ball was
no longer attached to the boom but was bounced freely in 3-D. To facilitate
this spatially unconstrained bouncing, the racket was also no longer at-
tached to the floor piece with the string. The accelerometer had a long cable
connecting it to the computer, so that the racket movements were not
obstructed and were truly performed in 3-D. However, no position data of
ball and racket were collected. A sponge ball the size of a tennis ball was
used, which was lighter and easier to control. The exact coefficient of
restitution could not be determined because there was no position data
available to measure ball displacements and velocities before and after the
impact. However, when the ball was attached to the boom « was deter-
mined to be .52. Gravity conditions were therefore normal, g = 9.81 m/s*.
The acceleration data were collected by the same A/D card and LabView
software as in Experiment 1. The sampling rate was 500 Hz.

Procedure and Design

Before we started the data collection the participants had the opportunity
to practice for as long as they wanted to get used to the apparatus and task.
The racket was slightly heavier because of the attached accelerometer, but
otherwise the task did not differ from the normal movement with a tennis
racket. Ten minutes of practice usvally sufficed in which participants tried
out different bouncing amplitudes. They were told to find their most
comfortable ball amplitude. They were also instructed to stay as stationary
as possible and not to move more than one step to reach the ball when it
was displaced slightly. No standing area was prescribed. Because our focus
was on testing the validity of the model predictions for the unconstrained
task, we refrained from collecting different amplitude conditions, and so a
finer grained analysis of the position data was not possible. Furthermore,
the ball’s trajectory was now completely unconstrained, so the task had to
be performed with open eyes. Performance with closed eyes was possible
but very difficult.

Participants began to bounce the ball by themselves. When they had
settled into a stable pattern at their preferred frequency, they signaled to the
experimenter to start the data collection. If they had to step for more than
one step or lost the ball, the trial was repeated. For some participants,
especially the female undergraduate who had no experience with racket
sports, this happened a couple of times. Most other students had no
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problems in maintaining a stable pattern. Participants performed four trials
in succession with a few minutes break in between, following the same
instruction. Each trial lasted 30 s.

Data Analysis and Reduction

The racket acceleration at impact was determined on the basis of the
unfiltered signals as in Experiment 1. In addition, the intervals between
impacts in the acceleration signal provided a measure of the periodicity of
the rhythmic performance. Prior to capturing the central tendency and
dispersion of these two measures per trial, we checked the distribution of
the 40 to 60 data points and found that many trials did not satisfy a normal
distribution. We therefore calculated the median and interquartile range of
the dependent measures to describe individual trial performances across

-one trial.

Results and Discussion

The self-selected periods for this task ranged between individual
trial medians of .308 s and .647 s, with an overall arithmetic mean
of .502 s. The range of period values per trial were on average
.027 s, indicating that participants fulfilled the task demands and
bounced the ball at a relatively steady rhythm and, consequently,
with a relatively stable ball amplitude. This is an informative result
as the task was relatively demanding compared with the one in
Experiment 1; in the present task the ball could actually be lost.
The variability estimates did not show any systematic dependen-
cies on the median periods. Each participant produced very similar
periods in the four trials.

The primary focus in this experiment was again on the racket
accelerations at impact X. Participants performed trials with me-
dian i, values ranging between —4.10 and —0.54 m/s>. As sum-
marized in Figure 9, different participants (P1, P2, . ..) had trial
means around different %, values that reflected different prefer-
ences, which repeated the picture obtained from Experiment 1
(compare Figure 5). This result confirmed that model’s predictions
were again satisfied. What is noticeable, however, is that X, values
were confined to a smaller range than previously. As was seen in
Figure 2, the smaller the alpha, the shorter the range, or the smaller
the “well” providing optimal stability.
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Figure 9. Interquartile range (IQR) of %z versus trial medians of iz of
Experiment 2. The different symbols represent the 5 participants.
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To test the predictions for stability associated with different %,
values, the same qualitative picture as in Experiment 1 emerged.
Variability quantified by the interquartile range of X, consistently
decreased with increasingly negative % values (Figure 9).

The major conclusion from this study is that even in completely
unconstrained performance the task was again performed with a
strategy such that the racket’s upward movement was already inits
decelerating phase when hitting the ball. As argued above, the
selection of this specific strategy is not trivial and runs counter 10
an alternative strategy where the ball is hit at peak velocity that
could be deemed a more efficient strategy. We therefore conclude
that the model has validity even when the movement task is far less
constrained than its original one-dimensional formulation. Conse-
quently, the results support our claim that participants attuned to a
strategy that used the stability properties of the task.

Experiment 3

The second major objective of our experimental series was to
determine what kind of perceptual information is necessary for
actors to attune to the identified stable movement strategy. Exper-
iment 1 showed that for the one-dimensional task, visual informa-
tion was not critical and, on the whole, performance (as captured
by the essential variable xg) was indistinguishable regardless of
whether visual information was available. On the other hand,
variability in X, did differ for the two visual conditions. This result
can be interpreted in two ways: Either visual information is not
needed for attaining dynamically stable performance, or other
informational sources provide the relevant information that couple
the actor and the environment. If perceptual information were not
needed for maintaining stable performance, this would support the
hypothesis that rhythmic ball bouncing can be maintained without
ongoing adjustments. Alternatively, there may be other informa-
tion that aids in maintaining the performance. Given the centrality
of the impact in this task, our conjecture was that haptic informa-
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tion is at least as important as visual information. This includes
information about the force at the impact as well as kinesthetic
information about the continuous arm movements leading toward
the impact. We designed Experiment 3 to shed more light on the
relative contribution of the sensory modalities to performance. An
apparatus was constructed that allowed the manipulation of visual
information and eliminated haptic information about the impact.
The movement task itself was again strictly confined to one
dimension and was identical to the original study by Schaal et al.
(1996).

Method

‘Participants

One woman and 2 men (mean age = 33.4 years) volunteered for this
experiment. They were graduate and postgraduate students in the lab of the
Department for Brain and Cognitive Science at the Massachusetts Institute
of Technology. Two were right-handed, 1 was left-handed; the movements
were always performed with the dominant hand.

Apparatus and Data Collection

The apparatus with which the movements were performed is shown in
Figure 10. The racket was mounted to a pantograph linkage 1.0 m long, and
its two hinges were connected to a stanchion 1.0 m high. At the distal end
of the linkage a racket surface was mounted. The proximal end of the
linkage had an attached handle that the participants held in a fully pronated
grip and performed downward movements to produce upward movements
of the racket. The racket was a Koosh paddle, a commercially available
beach toy. It consisted of a circular frame of .30 m diameter that was
covered by an elastic fabric. The coefficient of restitution o was experi-
mentally determined to be .71. The pantograph linkage was a lever arm
with a parallelogram-like arrangement such that the racket’s surface stayed
horizontal during its movement. Participants were positioned behind the
handle so that the linkage was horizontally aligned while their forearm and
their elbow joint were at an approximately right angle. Although the distal

Figure 10. Apparatus used in Experiment 3. The ball was attached to a boom. The apparatus consisted of two
handles: One handle was directly attached to the racket surface and was used for the FI (full information) and
NO-VI (no visual information) conditions. In the NO-HI (no haptic information) condition, a second identical
handle was moved in parallel to the handle proper, and its displacements were recorded by a computer and
converted into desired trajectories to be implemented and performed by the proper handle and racket. No
information about the impact force of the ball was transferred to the hand.
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end of the pantograph’s motion was strictly curvilinear, the effective
movements of the racket’s surface could be considered vertical, because
the amplitudes generally did not leave the linear range (x30°).

A table tennis ball with a diameter of 0.03 m was fixed to a light-weight
(0.2 kg) aluminum boom 1.0 m long which, in rum, was attached to another
stanchion by a hinge joint at a height of 1.2 m. At the boom’s opposite
short end, a weight could be added, which modified the flight properties of
the ball. Boom and racket arm were aligned and arranged so that, in the
horizontal position, the ball rested on the center of the racket's surface. A
potentiometer, attached to the boom’s hinge, measured the angular dis-
placement of the boom that was used to determine the ball’'s vertical
displacement. Similarly, the collection of the position data of the panto-
graph’s movement was done by a high-resolution position encoder that was
attached in one of the hinge joints of the stanchion. So far, this is the same
apparatus as the one used for the study reported in Schaal et al. (1996).

To create a condition where no haptic information about the impact was
available, the above setup was converted into a telerobotic device. For this
purpose, a S0 Nm torque motor (NSK Direct Drive, Japan) was added to
actuate the original pantograph at its hinge, and an additional 1.0-m-long
lever arm was mounted on another stanchion with a hinge joint, positioned
in parallel to the pantograph arm. An identical handle was attached to this
arm. In the experimental task, participants performed identical up and
down movements with this second handle. The angular displacements were
measured by a potentiometer, and they were numerically differentiated to
obtain velocities. After digital filtering, position and velocity data served as
desired trajectories for the torque motor that actually moved the racket on
the pantograph as in the original task. The telerobotic connection was
operated at 1000 Hz sampling frequency out of a Motorola MVME167
computer running the real-time operating system vxWorks (WindRiver
Systems, Alamedo, CA). Because of the high sampling frequency, the time
delay between the participants' movements and the racket movements was
maximally 5 ms, and the gains of the proportional-derivative controller of
the motor could be chosen very high. Consequently, the participants’
movements were faithfully reproduced by the robotic device. Given the
light weight of the ball-boom setup, impact of racket and ball resulted in
minimal deviations of the tracking performance of the robot (i.e., maximal
tracking errors were less than 5 mm). Because both the manipulandum’s
handle and the robot handle were positioned next to each other, the
participant perceived the ball’s movements as if he or she controlled the
handle movement directly. However, the participant had no haptic infor-
mation about the impact between racket and ball.

The computer collected position data from racket and ball at a sampling
frequency of 1000 Hz. Velocity data of ball and racket were derived on-line
by numerical differentiation of the position data and subsequent filtering,
using a third-order, low-pass Butterworth filter with a cutoff frequency of
30 Hz. Because of memory limitations, only every 10th data point was
stored, which corresponded to a downsampling of the data to 100 Hz.
Filtering the data on-line at 1000 Hz resuited in a higher bandwidth than
off-line filtering of the downsampled data. Delays introduced by the purely
forward filters were negligible because of the high sampling frequency.
Off-line data processing consisted of high-pass second-order Butterworth
filtering of the position data in order to eliminate slow drifting of the
average racket position (cutoff frequency .5 Hz, zero-delay filter) and
numerical differentiation of the filtered velocity data to derive accelera-
tions for ball and racket.

The dependent measures were determined in the same way as described
in Experiments 1 and 2. The central tendency and dispersion for all discrete
measures characterizing the periodic trajectory and the impact (i.e., am-
plitudes, periods, and acceleration at the point of impact) were determined
using median and interquartile range of 20 and 34 cycles across each trial.
This was done because some trials did not show a normal distribution.
Subsequently, the arithmetic means were calculated for two trials per
condition of each participant and entered into the analyses of variance.
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Experimental Procedure and Design

Prior to the experiment participants were instructed about the task.
Participants were given about 5 min to practice using both handles, which
was sufficient to make them feel comfortable with the apparatus. During
this practice they were asked to explore different amplitudes and frequen-
cies in order to find three distinguishable heights where they could juggle
the ball comfortably. The recommendations about the ball amplitudes were
identical to Experiment 1. At the beginning of the data collection the
participants stood right behind the pantograph, grasping the handle from
the top in a pronated grip. Before each trial the participant was informed
about the particular amplitude or perceptual condition. Data collection
started when the rhythmic movement was stable. If the participant did not
maintain a steady rhythm, the trial was repeated. The three perceptual
conditions were labeled as NO-HI when there was no information about the
impact available, NO-VI when the participants closed their eyes, and FI for
full information in the control condition. Each trial lasted 30 s.

A two-factor 3 X 3 design was chosen with three different juggling
amplitudes (high, medium, and low) and three perceptual conditions (NO-
VI, NO-HI, and FI). Two trials were performed for each of the three
amplitude conditions and the three perceptual conditions. Conditions were
presented in randomized order. The whole experiment lasted approxi-
mately 30 min.

Results and Discussion

Kinematic Description of the Movements of Racket
and Ball

Figure 11 gives a first qualitative impression of the coordination
of racket and ball in three exemplary trials performed under the
three perceptual conditions from top to bottom: full information
(FI), no visual information (NO-VI), and no haptic information
(NO-HI). Whereas the time series only show a window of 3 s, the
accompanying phase portraits on the right display the trajectory
across the complete trials. The time series shows the racket’s
quasi-sinusoidal movements and also illustrates again that the
majority of impacts occurred in the decelerating phase. This is
similarly represented in the phase portraits where the dots repre-
sent the phase of the ball-racket impact. The dots in the upper right
quadrant show that impacts were performed with negative Xy.
Impact at maximum velocity (i.e., zero Xg) and impacts with
positive X, are at the top and in the left upper quadrant, respec-
tively. Inspection shows that NO-VI had considerably more dis-
persed impacts, whereas in the NO-HI condition there was little
variation but a noticeable shift in the impacts toward maximum
velocity.

The standard kinematic descriptors for ball and racket trajecto-
ries were analyzed and are summarized in Table 2. A 3 X 3
repeated measures ANOVA confirmed that participants had no
problems to bounce the ball at three distinguishable amplitudes,
F(2,4) = 25.28, p < .01. The dispersion estimates, the interquar-
tile range of the peak amplitudes IQR(A ), showed no differences
across all six conditions, indicating that participants could produce
comparabie ball trajectories under all different kinds of perceptual
information. On average the IQR(Ap) was 5.5 cm, which corre-
sponded to 10% of the ball amplitude. As listed in Table 2 the
NO-HI condition with high ball amplitudes provided considerably
more difficulty than all other conditions. When comparing the
proportional variability from the table, one can infer that the low
amplitude condition was associated with a higher percentage of
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Figure 11. Three time series and their respective phase portraits of exemplary trials performed in the three

perceptual conditions of Experiment 3. The dots in the phase portraits denote the impacts. FI = full information
condition; NO-VI = no visual information condition; NO-HI = no haptic information condition.

variability in relation to the mean amplitude. A noteworthy finding
is that the variability of ball and racket trajectories was not
different in the conditions that partially excluded perceptual
information.

Racker Acceleration at Impact

We next turned our attention to the acceleration at impact.
Median and interquartile ranges served as statistic measures for
each trial, and the averages of the two trials per condition were
entered into the 3 X 3 repeated measures ANOVAs. The results
showed all three effects as significant. A weak interaction identi-
fied that whereas %5 successively decreased with decreasing ball
amplitude, the medium and high ball amplitudes conditions

Table 2

switched order in the NO-HI condition, F(4, 8) = 4.06, p = .04
(see Table 2). Because both i, means were positive, identifying
them as unstable trials, this effect was not further interpreted in the
present context. The main effect for amplitude revealed that %
became progressively more negative with lower ball amplitudes,
F(2,4) = 9.79, p < .05; high, —.81 m/s?; medium, —1.63 mv/s?;
low, —3.82 m/s”. The second main effect for percepiual informa-
tion showed that in the FI condition X was lowest and NO-HI was
closest to zero, F(2, 4) = 8.54, p < .05 (see Table 2). The overall
mean values for the three participants in the three perceptual
conditions were NO-HI: —0.40 m/s% NO-VI: —2.72 m/s%; FI:
-3.15 m/s®. Post hoc analyses detected a difference between
NO-HI and the other two conditions, but no difference between

Median (and Interquartile Range) of All Three Participants for Racket Amplitude (A, in Meters), Racket Period (T, in Seconds),
Ball Amplitude (Ag; in Meters), Ball Period (Tg; in Seconds), and Racket Acceleration at Impact

(%r; in Meters per Seconds Squared) in Experiment 3

NO-HI NO-VI FI
Measure High Medium Low High Medium Low High Medium Low
Ar 0.164 (0.016) 0.117(0.010) 0.065(0.008) 0.182(0.027) 0.117(0.012) 0.071(0.010) 0.172(0.014) 0.106 (0.011) 0.065 (0.008)
T 0.677 (0.048) 0.556 (0.032) 0.413(0.021) 0.682(0.073) 0.576(0.026) 0.432(0.022) 0.721(0.040) 0.552(0.023) 0.427 (0.020)
Ag 0.627 (0.060) 0.454 (0.037) 0.257 (0.030) 0.646(0.167) 0.484(0.041) 0.286 (0.040) 0.694(0.044) 0.445(0.038) 0.273 (0.035)
Tp 0.676 (0.043) 0.556 (0.023) 0.416(0.024) 0.687(0.107) 0.577 (0.026) 0.433 (0.024) 0.722(0.034) 0.551 (0.021) 0.427 (0.002)
X 0.58 (3.28) 1.30(3.66) —3.08(2.65) -1.27(641) —286(257) -—-4.02(3.09) -174(250) —3.37(1.87) -—-439(261)

Note. NO-HI = no haptic information condition; NO-VI = no visua! information condition; FI = full information (contral condition).
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FI and NO-VL. The mode of all values was at —2.50 m/s?
(Figure 12).

Turning to the variability estimates IQR (%), the ANOVA iden-
tified again all effects as significant. An interaction highlighted
that high amplitude bouncing without visual information was more
variable than every other condition, F(2, 4) = 9.16, p < .01. A
main effect showed that the variability in the FI condition was
significantly lower than in the other two perceptual conditions,
F(2,4) = 1.61, p < .05. Post hoc tests did not identify differences
between NO-HI and NO-VI, but FI was different from the other
two. The second main effect revealed that the level of variability
increased with increasing amplitude, F(2, 4) = 7.35, p < .05.
Figure 12 summarizes these results graphically by showing all
individual trial means and the three overall means for the percep-
tual conditions. The solid curved line is the superimposed predic-
tion as calculated from the Lyapunov stability analysis although it
is only shown for the range of observed values (compare Figure 2).
To emphasize that these results were very consistent despite the
few participants, we also scrutinized the data for each participant
performing under the three perceptual conditions. These arithmetic
means of the two trials per condition calculated for the medians of
%, and IQR(x) are listed for each participant in Table 3. In
general, the same consistent pattern was observed in all three
participants.

In summary, these results were informative with respect to the
two major objectives of the study. First, the results confirmed
again that in most cases, the predictions from the model were
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Table 3

Median (and Interquartile Range) of Racket Acceleration at
Impact (in Meters per Seconds Squared) for Each Participant
in the Three Perceptual Conditions of Experiment 3

Participant NO-HI NO-VI FI
1 0.25 (4.14) -3.39(5.02) ~4.08 (2.97)
2 —2.35(3.05) —3.97 (4.63) —3.48 (2.19)
3 0.89 (2.03) -0.79 (2.40) -1.90(1.81)
Note. NO-HI = no haptic information condition; NO-VI = no visual

information condition; FI = full information (control condition).

satisfied and participants attuned to the stability properties of the
task. Second, examination of the contribution of different percep-
tual systems to successful task performance showed that the three
perceptual conditions led to clearly different results. The results in
the control condition FI replicated the findings of the previously
published study in which the same apparatus was used in showing
a clear consistency with the model’s predictions (see Schaal et al.,
1996). It also corroborated results from Experiments 1 and 2. In
comparison, when continuous visual information was withheld
(NO-VI), as in Experiment 1, participants performed with Xz
values that were indistinguishable from their performance under
no perceptual constraints. Yet, variability in the essential variable
was higher in the blindfolded execution, replicating the findings of
Experiment 1. In contrast, when continuous visual (i.e., kinematic)

A o —
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Figure 12. Median and interquartile range (IQR) values of X obtained for each trial of all three participants.
The enlarged filled symbols represent the means across the three perceptual conditions. The line represents the
predicted values from the Lyapunov analysis performed for « = .71. The inserted histogram illustrates that the
most frequent performance was with iy values between —6 and —2 m/s>. NO-VI = no visual information
condition; NO-HI = no haptic information condition; FI = full information condition.
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information was available, but no haptic (i.e., no kinetic) informa-
tion about the impact was available (NO-HI), participants per-
formed with %, values that provided less or no stability according
to the model. This significant difference is even more interesting
when one considers that in the NO-VI condition participants had
only intermittent information about the ball location during the
very short impacts, compared with uninterrupted visual informa-
tion in the NO-HI condition.

With respect to our initial hypotheses, these results provide the
following answer: Visual information is not crucial for detecting
the optimal magnitude of the critical parameter X, but without
visual information more variance in performance was observed
than in the control condition with full perceptual information. This
suggests that during normal performance additional adjustments
were made to ensure relative constancy in performance. In addition
to visual information, haptic information is the most likely candi-
date for a central role in the fine-tuning of ongoing performance.
Results of the NO-HI condition revealed that searching and main-
taining optimal ¥, values depended more critically on haptic
information. In spite of the nonoptimal range of X, values found in
the NO-HI trials, variability in %, was not different, a result
counter to the model’s predictions. For instance, some NO-HI
trials with positive ¥ have even lower variability than NO-VI
trials, and this cannot be explained on the basis of the model. What
this result clearly expresses is that other strategies such as
feedback-based corrections must be used which possibly use visual
anticipatory or feedback information to maintain the ball’s peak
amplitude constant. This observation is in fact very important as it
highlights that the dynamically stable strategy is not the only one
available. Yet, given our theoretical arguments and empirical
support we contend that it is the more parsimonious strategy. With
the goal to further reveal signs of such alternative strategies, we
conducted a series of analyses on the time series.

Harmonicity

Inspecting the deviations in the racket trajectory from harmonic
motion during one cycle of the racket motion, the averaged profiles
of A looked remarkably similar to the ones of Experiment 1 (Figure
7). For all conditions, the phase leading up to the impact at 37/2
showed positive A, whereas in the first half of 8; A was negative.
This clearly speaks to a modulation of the trajectory with respect
to the ball. However, all conditions showed the same topology.
Variations around the mean profile were uniform throughout the
whole cycle. When we performed a 3 X 3 ANOVA on Apge a
weak interaction between amplitude and perceptual information
marked that for high amplitudes in the haptic condition, A,,; Was
significantly higher than in all other conditions, F(4, 8) = 4.37,
p < .05. The measures evidently signaled that for high amplitudes
the variability and deviation from harmonicity is larger than for
lower amplitudes. There was a main effect of amplitude, indicating
that the high amplitude deviated more strongly from a sinusoidat
wave than the medium and the low amplitude, F(2, 4) = 53.96,
p < .001.

Relative Phase

As in Experiment 1, the average continuous relative phase
between racket and ball was calculated, and the mean profile of

STERNAD. DUARTE, KATSUMATA, AND SCHAAL

each trial was contrasted against the simulated relative phase. As
already shown in Figure 8, the profile of relative phase had a
distinct shape across one cycle which showed deviations prior to
the impact from the simulated profile but did not change in the
different conditions. The band of standard deviations showed an
increase before and around the impact phase, indicating that ad-
justments were made directly prior to the impact. However, this
signature was indifferent to the experimental manipulations. This
picture was reflected in the lack of effects in the cumulative
measure ¢, and repeated the lack of effects between perceptual
conditions in Experiment 1.

Absolute Position of Impact

Given the unexpected lack of differences between the perceptual
conditions in the two preceding analyses of the continuous time
series as well as the absence of striking deviations of the trials,
classified as unstable in our analyses, we performed a series of
other comparisons, one of which did identify differences. Having
determined the absolute position of the impact above ground and
calculated the median and interquartile range for each trial, we
performed a 3 X 3 ANOVA. 1t identified significant differences
between perceptual conditions, F(2, 4) = 13.52, p < .05, and
amplitudes, F(2, 4) = 15.95, p < .01. Although we expected the
decreases in the variability with smaller ball amplitude, the result
that the NO-VI condition was less variable than the NO-HI con-
dition was informative about the strategy participants used. In the
NO-HI and the FI conditions participants evidently kept the impact
position more constant in external space following the instructions
to produce an invariant pattern. Without visual information (the
NO-VI condition), the impact position varied more in its vertical
location. Yet, the acceleration was generally in the range expected
to provide more stability. Thus, one can conclude that when
participants had no information about the impact force, they em-
phasized invariance in the kinematic pattern at the expense of the
dynamically more optimal impact.

General Discussion

The experimental task of bouncing a ball with a racket is
exemplary of the complex demands that coordinated action pre-
sents for the individual’s perceptual-motor system. In order to
bounce the ball rhythmically, the actor has to perform either
single-joint or multijoint movements of the arm to precisely time
the racket’s motions to intercept the ball with the appropriate
impact force to achieve invariant ball amplitudes. Information
about the ball trajectory and the impact force has to be detected to
coordinate the actions appropriately. Our approach aimed to un-
derstand movement coordination as one that arises out of the
interplay between the actor’s movements and the environment in
which the actions are situated. This emphasis on the integrated
nature of perception and action as the entry point for investigation
is a central tenet in ecological psychology, but it has also increas-
ingly come to the forefront in more cognitive approaches (Fowler
& Turvey, 1978; Goodale, 1998; Harman, Humphrey, & Goodale,
1999). A particular advantage motivating the choice of this task is
that a model could be developed that minimally captures the
task-relevant components: the actor’s movements represented in
terms of a periodically moving surface, the environmental support
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in terms of the racket and ball impact, and the ensuing ballistic
flight trajectory of the ball.

In the mathematical literature it was shown that a very similar
nonlinear impact map displays the typical attractor solutions with
a period-doubling route to chaos found in nonlinear maps, similar
to the better known logistic map (for an introduction, see Peitgen,
Jiirgens, & Saupe, 1992; Tufillaro et al., 1992). Our primary
hypothesis was that attractor solutions of this system were relevant
for human perceptual-motor coordination. We further assumed
that dynamic stability of an attractor solution is a meaningful
criterion for successful performance, because this solution can
potentially alleviate the need for processing-expensive feedback-
based control. We therefore conducted two types of stability anal-
ysis on the model that provided qualitative and quantitative pre-
dictions. Local linear stability analysis identified that the
acceleration of the racket at impact was the critical variable that
uniquely determined whether the task was performed in a dynam-
ically stable fashion. Nonlocal stability analysis yielded differen-
tiated predictions about the degree of stability associated with
different values of acceleration. Borrowing the language of
Gel’fand and Tsetlin (1962, 1971), this task, as such, provided an
example of a well-organized action problem where an essential
variable could be isolated from nonessential ones. Essential vari-
ables are collective variables that determine the topology of the
solution and that are formulated at a level of description relevant
for the actor. The candidate for an essential variable was the
acceleration at impact, which then served as the primary criterion
to evaluate participants’ performance.

Three task variations were designed that corresponded to the
simple model system such that the criteria for stable solutions
directly served as hypotheses for evaluating the human perfor-
mance. In a previous article (Schaal et al., 1996) we already
presented the ball-table model and tested its validity in a highly
constrained task that directly imitated the horizontal surface and
the restriction to one-dimensional movements of ball and surface.
The results presented a first support for the hypothesis that dy-
namic stability was an important criterion that guided actors in
executing this task. The experiments reported in this article further
verified in three task variations that participants chose movement
solutions in quantitative and qualitative accordance to the theoret-
ical predictions, even when the task was less constrained. Three
very different experimental set-ups involved either full-arm move-
ments (Experiments 1 and 2) or single-joint movements (Experi-
ment 3), with performance constrained to either one dimension
(Experiments 1 and 3) or 3-D (Experiment 2). In all cases partic-
ipants preferred solutions with negative racket acceleration at
impact around —3 m/s®, which predicted highest stability, al-
though other solutions were occasionally chosen. The observed
variability in different task measures followed the differential
predictions of the Lyapunov stability analysis.

The objective of the incremental relaxing of constraints in the
first two experiments was to demonstrate the generality and ro-
bustness of these predictions and to probe whether more natural
juggling tasks could be addressed with this approach. All results
encouraged more research that transfer this approach to other ball
manipulative skills such as bouncing a bali on the floor or even
catching and throwing actions that involve complex finger and
hand coordination. Romack (1995), for instance, showed that in
basketball dribbling it is the phasing of the contact between ball
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and hand trajectory that distinguishes the leamners’ progress and
the influence of different demonstrations. We also believe that the
present results are a promising bridge between our simple skill and
juggling as investigated by Beek and colleagues (Beek, 1989a,
1989b; Beek & Turvey, 1992; Beek & van Santvoord, 1992).
Sternad (1999) reviewed the theoretical and empirical methodol-
ogies adopted in both lines of research, showing their parallels and
differences. Common in both lines of research is that a theoretical
analysis of the task as a dynamical system defined a measurable
quantity that successfully served as a benchmark to characterize
stable solutions and address questions of movement control, per-
ception, and learning. Where these two lines of research meet
remains an open question.

Having established that acceleration at impact is indeed a viable
candidate for an essential variable in the actor’s coordination, we
next searched for the kind of perceptual information that supported
the participants’ attuning to optimal values of this variable. Ex-
periment 1 contrasted the one-dimensional task performed with
and without visual information. It was hypothesized that if the
bouncing actions were performed in a dynamically stable regime,
then the lack of visual information should not affect task perfor-
mance, given that self-inflicted deviations remained small. Indeed,
the results showed that even when blindfolded, participants con-
tinued to choose ball contacts with negative accelerations. We
concluded that haptic or maybe even auditory information must
have been sufficient to attune to the appropriate acceleration value.
On the other hand, increased variability reflected some change in
the level of control. Evidently, when full information is available
visual information aids in stabilizing task performance. Analysis of
the continuous racket trajectory and the relative phase between ball
and racket revealed that approximately one quarter cycle prior to
contact, there is a marked modulation in relative phase accompa-
nied by increased variability across repeated cycles. We inter-
preted this finding as indicative of anticipatory adjustments, pre-
paring for the right impact. However, no differences between
perceptual conditions could be identified.

Insights that are more conclusive were obtained in Experiment
3, which also permitted the exclusion of haptic information. In this
condition, participants had unrestricted information about the ball
and racket trajectories as well as about their arm movements. The
only missing piece was direct information about the force of the
impact. Contrary to our expectation, we found that under this
manipulation participants tended not to use or find the dynamically
stable strategy, and many triais had to be considered as unstable
according to model criteria. This result is noteworthy because a
series of studies has accumulated evidence that information about
kinetics, specifically in collision events, can be obtained from
kinematic (i.e., visual) information (Bingham, 1995; Michaels &
de Vries, 1998; Runeson & Frykholm, 1983; Runeson & Vedeler,
1993; Todd & Warren, 1982). In contrast, in our study the inter-
mittent and extremely short moments of impact provided better
guidance than visual information to bounce the ball with negative
acceleration at impact. That haptic perception reveals more than
location and magnitude of contact and pressure on the skin has
been shown in a long series of studies on dynamic touch (for an
overview, see Turvey, 1996). The haptic system is a complex
perceptual system that uses the stress and strain patterns exerted
onto muscle tissue including muscular effort in order to perceive
object properties that are contacted. Closely related to the present
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task is a study by Carello et al. (1999) in which participants
detected the location of the sweet spot of a tennis racket. In the
experiment, participants reliably reported the distance of the rack-
et’s center of percussion (sweet spot) from the hand by merely
wielding the racket. This and similar studies highlight the ability of
the haptic system of perceiving geometric (distance) and dynamic
(center of percussion) properties of hand-held objects. Similar to
our experiment this study demonstrates the power of the haptic
system which, however, because of its complex nature is not yet as
well understood as the visual system, and its contribution is often
underestimated.

One final result in Experiment 3 revealed one further point: The
position of impact between racket and ball in external space was an
uncontrolled part in the task. When visual information was avail-
able, participants kept the position relatively stable in absolute
coordinates compared to the trials that relied primarily on haptic
information. This finding is consistent with the fact that kinesthetic
information does not provide position information that is needed to
anchor the impact in external space. However, this behavior nev-
ertheless is associated with impacts that are classified as dynam-
ically stable. This finding indicated that in the NO-HI conditions
participants tended to freeze the bali-racket system in external
space in the attempt to satisfy invariance demands of the instruc-
tion, but they sacrificed a dynamically stable impact. In contrast,
when only haptic information was available, this invariant impact
position was irrelevant and more variable whereas the control of
the ball impact remained in the stable range.

To further probe into more subtle differences in the continuous
trajectories, we analyzed the limit cycle characteristics of the
racket trajectory and relative phasing between ball and racket. The
so-called harmonicity measure, which quantified deviations from a
harmonic wave, looked remarkably similar in their profiles across
all conditions. The only difference was that deviations scaled up
for larger amplitude trajectories but did not change in their topo-
logical profile. Similarly, relative phase showed remarkable invari-
ance across amplitudes and perceptual variations. This observation
is in accordance with the results of Schaal et al. (1996), who
proposed a criterion for topological invariance (see also Sternad,
1998). The scaling of movements in size did not change the
topology of the endpoint trajectories, even when they were asso-
ciated with systematic changes in the impact (Bernstein, 1967). It
is worth highlighting that, whereas these continuous measures did
not identify differences between the different perceptual condi-
tions, the racket acceleration was the most sensitive measure, thus
indirectly confirming the validity of this measure.

Negative acceleration at impact is not a trivial result. From an
efficiency point of view the ball should be hit at peak velocity (i.e.,
zero acceleration). The trend toward more negative acceleration
values across repetitions in Experiment 1 speaks clearly against
this expectation. Conversely, it demonstrates that a strategy in
which the ball is hit in its decelerating portion is more preferable
and found over practice. This effect is further explored in Sternad
and Katsumata (2000) and ongoing research. In fact, when com-
paring this study to work in robotics, Koditschek and colleagues
constructed a one-dimensional juggling robot, consisting of a flat
board impacting a puck on a steep inclined plane, which was
driven by the so-called mirror algorithm (Biihler, Koditschek, &
Kindlmann, 1994). This algorithm controlled the actuator’s veloc-
ity such that it mirrored the ball’s velocity (with opposite sign), a
strategy that entails positive acceleration for the actuator at impact.
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The task is equally close to our impact map so that it can be
concluded that these are unstable juggling strategies, and, conse-
quently, noise and perturbations required high-performance stabi-
lizing feedback loops. For an artificial system it would undoubt-
edly be a less computationally expensive strategy if a stable
solution had been programmed in the first place.

Our entry into analyzing the skill of bouncing a ball started with
modeling the task with a kinematic nonlinear impact map. Al-
though we used the analysis tools of nonlinear dynamics, our
strategy differs from what is often referred to as the dynamic
pattern approach (Kelso, 1995; Turvey, 1990). Interestingly for
the present context, this modeling framework was applied to
account for a very similar ball-batting task and can serve to
illustrate a different modeling strategy (Sim, Shaw, & Turvey,
1997). The central first step in the dynamic pattern approach is the
identification of an order parameter, which captures the intrinsic
dynamics of the system. Relative phase between the oscillating
limbs has been verified to play the role of such an order parameter
for thythmic interlimb coordination. The second step is the for-
mulation of a potential equation for this order parameter that
captures the stable states described by the invariant value(s) of this
collective variable. To include task demands into the modeling,
instruction or intentions were modeled as an additive term in this
potential function. setting intrinsic and extrinsic dynamics at the
same formal level (Schoner & Kelso, 1988a, 1988b, 1988¢c). Bat-
ting a ball was modeled in this spirit, and relative phase between
the ball and bat’s periodic movements served as the order param-
eter. Striking the ball at the preferred frequency and amplitude was
captured by a potential equation representing the intrinsic dynam-
ics, and additional task requirements, like hitting the ball against a
wall, were added as additional terms representing the extrinsic
dynamics. Stability analyses of the model successfully predicted
stable phase relationships between ball and bat and the associated
degree of stability as a function different parameters.

Yet a different level of dynamic modeling was pursued in the
study of three-ball cascade juggling by Beek and colleagues (Beek,
19892, 1989b; Beek & Turvey, 1992). Instead of attempting to
analyze this highly complex coordination of the individual hands
and fingers, the authors focussed on a task analysis as their entry
into understanding the complex skill. In a series of studies, they
identified constraints in the relations between component times of
hand and ball trajectories where fundamental relations between
component times provided boundaries for which movements are
realizable. Formal and empirical analyses gave support to the
hypothesis that human jugglers obey principles of dynamics show-
ing that component times of the hand and ball cycles showed
properties of phase locking. Additional arguments derived from
the theory of phase locking specified a set of particular values as
preferable for stable performance. As in the dynamic pattern
perspective, no explicit account for the generation of movement in
terms of state variables was attempted (for a detailed comparison,
see Sternad, 1999). Needless to mention, all three strategies have
their merits as well as shortcomings. At this still early stage in the
development of dynamical systems tools for analysis of movement
coordination, it remains a useful exercise to recognize strategic
differences and to be aware of the multiplicity of tools available.

Summary

We analyzed the perceptual-motor task of ball bouncing by
adopting a task-based approach with the goal to identify a variable
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that is essential in constraining the many degrees of freedom in the
task. On the basis of a formal model and analyses from nonlinear
dynamics, we hypothesized that dynamic stability is a central
aspect that actors tend to use in performance. Stability analyses of
the nonlinear model of the ball bouncing system rendered accel-
eration at impact as candidate for the essential variable. Quantita-
tive and qualitative model predictions about the acceleration at
impact were satisfied in three task variations. Manipulation of
perceptual information highlighted that performance relied on both
visual and haptic information in different ways. Whereas haptic
information was the most critical perceptual source in attuning to
dynamic stability, visual information provided a constant support
to keep performance variability in bounds. From continuous time
series analysis we conclude that these perceptual sources present
both anticipatory and corrective mechanisms.
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Appendix A

Modeling the Bouncing Ball System as an Impact Map

To formulate a model for a bouncing ball, we express the motions of ball
and racket in terms of two state vectors, describing position and velocity of
ball and racket, respectively:

xg = (x5 %5)7
xp = (xz, 2p)". (AD)

The subscripts B and R refer to the ball and racket, respectively. This
contrasts to the dimensionless form of the classical dissipative standard
map, known as the modified Fermi-Ulam problem (Lichtenberg & Lieber-
man, 1982) but facilitates comparison of the model with actual data. The
motion is confined to the vertical dimension, where a positive sign defines
the upward direction. The instantaneous impact is defined by

aliz — Jig) = —(kr — X%p), (A2)

where the prime denotes the variables immediately after the impact. Alpha
is the coefficient of restitution capturing the energy loss during impact.
Under the assumption that X, = X, which implies that the mass of the
racket is much larger than the ball, mg >> m,, the impact relation can be
rewritten:

xp=Jgl(l + a) — axp (A3)

To render the analysis tractable, the continuous dynamical equations of
motion are discretized at the point immediately before the ball-racket
impact. At this moment both x,, and x, are identical and collapse into one
state, thus reducing the dimensionality of the system by one. This discreti-
zation is equivalent to taking the Poincare section at £ = {(xp xz) €
Rixz — xg = 0}. Information about the stability properties of the contin-
uous ball-racket system is completely contained in the recurrent pattern of
the discrete points of impact. Using the equations for ballistic flight

Xg= -8, (A4)

Xg= —gt+ ¢, and (AS5)

xp=—U2gl + eyt + s, {A6)

where g is the gravitational constant, and setting time t0 zero at every impact
after a cycle period T, we can write X5(t = 0) = %5, and xz(t = 0) = x5, and
solve for the coefficients ¢, = x5, and ¢, = x5, The subscripts n denote the
successive impacts. Inserting the coefficients into Equation A6 the position of
the ball at impact n + 1 (which, by definition, equals the one of the racket) can
now be expressed from the assumption of a ballistic flight of the ball:

Xpas1 = Aparr = — 1 28T7 + 55, T + Xg, (A7)
and solved for T:
T=-Vg{—3p,—

G + 2800 = Xpaet)) (AB)

Note that we omitted the second solution of Equation A7 in Equation A8
(i.e., a solution that would have a negative T), because it is irrelevant for
our experiments. Following from

Xg= —gt+ xp,and

2(T) = —gT + %3, (A9)

a discrete equation for ball velocity can be derived by inserting Equation
A8 into Equation A9:

=3{T) = —'\/(X‘I’J.n)z + 2g(xga —

Inserting the impact relation (Equation A3) into the derived expressions
yields the final set of system equations:

XBat1 Xgat1) (A10)

Xga+1 = ‘\/((1 + o)ty — aig)? + 28(xg, — Xner)

Xgn+t = Xgae1

Xpa+1 = Xpa(T) where T results from

~ 172gT* + (1 + @)ig, — ckg)T + (xp, — (AlD)

Xga+1) =0
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Appendix B

Stability Analyses of the Bouncing Ball System

Local Linear Stability

Local linear stability analysis gives a first assessment of the stability
properties of the fixed points determined for the model system (Equations
1 and All). We prove stability under the assumption that the racket’s
trajectory is an arbitrary periodic motion, formalized by a finite Fourier
series:

K
xg(t) = 2 A, sin(rot + ¢,),

r=1

such that at impact, position, velocity, and acceleration of the racket can be
written as

X
Xpa= O A, sin(rar, + @) = flat,),

r=1

X
Xpn = @ 2 A,rcos(rot, + ¢,) = of '(w1,). and

r=1

X
Fra = @ E — AP sin(ror, + @) = 0¥f"(wt,),

r=1

respectively, where A denotes the amplitude, w denotes the angular veloc-
ity, and ¢ denotes the phase. Using these equations and defining the phase
of the racket at the moment of impact as 8, = ot, (mod 2m), we
reformulate the racket states at impact in compact form as

Xen = f(6,)
dign = wf'(6,)
Xpn = ’f"(6,)

where

3 8?
f(8,) = Fo—,,f(e") and f"(8,) = a—off(ﬂn)

The discrete equations of the racket-ball system from Equation Al1 can
thus be replaced in terms of a function of the phase and ball velocity:

parr = = (1 + @)of'(6,) — aip,)’ + 28(f(68,) = £(6,+1))
Bos1 = 6, + Tw (BD)
where T results from
= 1/2gT* + (1 + @)wf'(6,) — cwipn)T + £(6) = f(6,41) = 0.

The equilibrium points of this discrete dynamical system must fulfill the
conditions 8,,, = 6, and Xz, , = X, resulting in the equilibrium conditions:

(i) @T = 27 = constant

i
(i) 50 = = 5 8T (<0)

1 (1 ~-a)
(iii) Xp, = wf’'(8,) = EgT(—H_—a) (>0).

Defining the state of the dynamical system in Equation Bl as

— (XB.A
z={g )

linearization about an equilibrium point results in a matrix equation

a? —(1 + a)awf"(6,)
za=Az,=| aw(l +a) 4 w1 + a)¥"(8,) |z. (B2)
4 4

This linearization is possible despite the transcendental structure of T in
Equation Bl by applying the implicit function theorem. (The implicit
function theorem explains how to take the derivative dy/dx of a function,
which is in implicit form fx, y) = 0. See, e.g., Simmons, 1985.) The 2 X
2 matrix A has two eigenvalues A, A,. The condition for stable equilibrium
points in discrete systems is that the absolute value of both eigenvalues
must lie in the interval {0, 1]. It therefore suffices to test the larger absolute
eigenvalue |A_,| for this condition and distinguish among the following
three stability cases within the range of X ,:

f i = a- a)z. 1 >
(a) for 0>ip,>—gqyom: > | Al Z @,
(1-a)
(b) for —g T %> 8 A=A = Apael = @,
1+ a?

(c) for —g=ig,> —2g a 1> |Agl = a.

The equations show that local stability depends only on the racket’s
acceleration at impact, X, the coefficient of restitution, «, and the
gravitational constant g. Whereas « and g are constant and are not under
control of an effector system, %, serves as the main variable for the
assessment of different bouncing solutions in the experiment. For the
analytical evaluation of local stability, the range of £, Where || is at
a minimum, is of primary importance. For given values of « (¢.g., .42), the
range is [—11.44, 0 my/s?]. This range is rather large, and local stability
analysis does not differentiate between conditions. Hence, a nonlocal
stability analysis is required to differentiate between these locally stable
solutions. However, a prerequisite for this analysis is that different solu-
tions can be compared (i.e., normalized such that quantitative comparisons
are possible). Mathematically, this question is addressed by topological
orbital equivalence (TOE), which tests whether one dynamical system can
be continuously transformed into another one.

Topological Orbital Equivalence

A formal way of establishing TOE is to find an orientation-preserving
homeomorphism between two dynamical systems (Arnol’d, 1983; Jackson,
1989). The following scaling relation h

(Appendix continues)
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x‘é.n = cxﬂ.n
R i:?.n = ch,n
E=a = ,c>0 (B3)

=, (27 =c7),

fulfills the requirements of TOE for Equation 1. For any constant, c, the
primed variables also fulfill Equation 1, which can be verified by inserting
them into these equations. This implies that by choosing ¢ = 1/1,. each
periodic bouncing ball system is normalized by 4 to unit period without
changing its dynamical properties. Hence, because of 4, any further anal-
ysis of ball bouncing can be performed on one system with unit period. For
the present analyses, it is important that the scaling relation does not affect
the acceleration of the racket. Thus, acceleration at impact can directly
serve as a measure of local stability.

Nonlocal Stability

To obtain a differentiation of stability predictions across the range of
Xz.,» the most common method is a global stability analysis of an equilib-
rium point that finds a Lyapunov function. This Lyapunov function is a
function of the state variables and is formulated such that it has a unique
global minimum at this equilibrivm point. If the time derivative of this
function is always negative (i.c., its value monotonically decreases with
time) the system converges to the minimum of the Lyapunov function.
According to our definition above, the minimum is the equilibrium point;
thus, global stability of the system is proven. For a nonlinear system a
Lyapunov function candidate can be derived from the linearized system.
The candidate function, L,, for the linearized dynamical system is (e.g..
Chen, 1984)

L,=12Pz, (B4)

To obtain negative time derivatives the matrix P has to satisfy the
equation:

ATPA-P= -1 (B5)

A is the system matrix of Equation A1 and I is the identity matrix, such that
the coefficients of P can be calculated from the constraint formulated in
Equation BS. For the discretized system, the value of L, must continuously
decrease when x, ,, is recursively iterated through Equation B2. Thus, a AL
can be defined between two successive impacts n and n + 1 of ball and
racket:

AL= Loy = Ly = 2,4 P2ye) = I,TPZ,,, (B6)

where the nonlinear system Equation B1 must be inserted for xy,.,. For
any state Xg,, AL may serve as a measure of how quickly the ball
converges to the stable equilibrium point. Whereas negative values of AL
indicate that x,, lies in the basin of attraction, a single positive AL
characterizes X, as unstable. For the following numerical assessment of
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stability, we are not able to prove true global stability but rather only
nonlocal stability (i.e., a measure of stability in the vicinity of the equi-
librium point). As we demonstrate, this numerical analysis suffices to
determine the point of maximal robustess for the ball bouncing task.
Using numerical optimization analysis (see below), it is possible to
assess nonlocal stability properties by simulating the dynamics of the ball
bouncing system given by Equation 1. At tme r = 0, we defined an
equilibrium point to be at the impact position, x; = 0, and the bouncing
period was set to 7 = 0.4 s. The scaling relation k ensures that these values
can be chosen arbitrarily without losing generality of the resuits. The
locally relevant section of the racket trajectory around the equilibrium
point was modeled as a sixth order polynomial in time. The order 6 was
empirically determined to give sufficient accuracy for the given purpose.

() =co+ et + e + off + ot + oo’ + ol (B7)

For the given impact conditions, xz(t = 0) = 0, ¢, must be zero. The
constant ¢, is also determined, because the racket velocity at impact is fully
determined by the ballistic flight and the coefficient of restitution. At
impact the second derivative of Equation B7, Xx(r = 0) = 2¢,. This
acceleration was set to 20 different values, taken from the range of local
stability. The goal of the optimization was to adjust the constants ¢ to ¢
for each of the 20 ig(r = 0) to achieve the largest and steepest basin of
artraction for the equilibrium point. Values of AL were calculated by
starting the ball at 2,500 different initial conditions in the vicinity of the
equilibrium point. The sum of all 2,500 ALs for a given set of parameters,
2 AL, was defined as an operational measure quantifying stability for each
Xg(r = 0). The ball’s initial conditions were determined by different
deviations from the impact time, r = 0, and impact velocities around the
equilibrium point of Xz. The range of the initial values was chosen to cover
an appropriately large neighborhood around the equilibrium point, but, as
this calculation aimed to give relative evaluations of £g(?), the actual range
limits could be chosen freely: ,,,, € [—0.187, +0.187], x5, € [—4m/s,
—1m/s]. The initial conditions were obtained by discretizing the intervals
into 50 values each. The optimization was performed with Powell's con-
jugate gradient method (Press, Flannery, Teukolsky, & Vetterling, 1988).

Figure 2 shows the numerical results of ZAL as a function of ¥x(1). Note
that small 2AL correspond to high global stability. As the trajectory of the
racket corresponding to each of the different X4(r) was optimized to obtain
maximal stability, the results express the best possible case for each Xz(1).

Stability is closely related to variability, because weakly stable states are
accompanied with larger fluctuations than highly stable states and have
longer relaxation times when perturbed. Therefore, the variability of X,
should increase proportional to the numerical estimate of the global sta-
bility index, SAL.
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