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A B S T R A C T

Background: The Gait Profile Score (GPS) measures the quality of an individual’s walking by calculating the
difference between the kinematic pattern and the average walking pattern of healthy individuals.

Research questions: The purposes of this study were to quantify the effect of speed on the GPS and to de-
termine whether the prediction of gait patterns at a specific speed would make the GPS outcome insensitive to
gait speed in the evaluation of post-stroke individuals.

Methods: The GPS was calculated for able-bodied individuals walking at different speeds and for the com-
parison of post-stroke individuals with able-bodied individuals using the original experimental data (standard
GPS) and the predicted gait patterns at a given speed (GPS velocity, GPSv). We employed standard gait analysis
for data collection of the subjects. Sixteen participants with a stroke history were recruited for the post-stroke
group, and 15 age-matched, able-bodied participants formed the control group.

Results: Gait speed significantly affects the GPS and the method to predict the gait patterns at any speed is
able to mitigate the effects of gait speed on the GPS. Overall, the gap between the GPS and GPSv values across the
post-stroke individuals was small (0.5° on average, range from 0.0° to 1.4°) and not statistically significant.
However, there was a significant negative linear relationship in the absolute difference between the GPS and
GPSv values for the participants of the post-stroke group with gait speed, indicating that a larger difference
between the speeds of the post-stroke participant and the reference dataset resulted in a larger difference be-
tween the GPS and GPSv.

Significance: The modified version of the GPS, the GPSv, is effective in reducing the impact of gait speed on
GPS; however, the observed difference between the two methods was only around 1° for the slowest individuals
in comparison to the reference dataset.

1. Introduction

The Gait Profile Score (GPS) measures the quality of an individual’s
walking by calculating the difference between the kinematic pattern
(angles for the pelvic tilt, obliquity, and rotation; and for both sides of
the body, hip flexion, abduction and rotation, knee flexion, ankle dor-
siflexion, and foot progression) and the average walking pattern of
healthy individuals [1]. Compared with other gait indices, such as Gait
Deviation Index [2], Gait Deviation Index Kinetic [3], and Gillette Gait
Index [4], GPS has the advantage of also revealing the separate con-
tribution of each kinematic variable (angles for the pelvic tilt, obliquity,
and rotation; and for both sides of the body, hip flexion, abduction and
rotation, knee flexion, ankle dorsiflexion, and foot progression) by first
calculating the Gait Variable Score (GVS), thereby creating the Move-
ment Analysis Profile (MAP). The GPS has been used to evaluate gait

abnormalities in different populations [5–7]. In such evaluations,
comparisons are made between one or more patients and a dataset of
healthy individuals walking at their comfortable pace at speeds typi-
cally higher than the patients. A likely problem with this approach is
that it is known that walking speed affects gait patterns of healthy in-
dividuals [8,9] and for instance, people with a stroke history [10–14] or
with Parkinson’s disease [15] tend to walk slower than healthy controls.
In fact, gait speed, not age, has been suggested to be the primary de-
terminant of kinematic and kinetic alterations in children [16].
Therefore, the GPS would be influenced by either the physical condition
(the pathology per se) or the walking speed, or both, potentially ham-
pering the ability of the GPS to quantify the exact effect of a disorder on
the gait pattern. When the GPS was correlated with walking speed, only
a small correlation (ρ=0.28) was found [1]. However, since these data
were predominantly from individuals with different disabilities or at
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distinct stages of impairment, these factors alone may have confounded
the effect of speed on the gait patterns. I.e., ideally, a study where the
same subjects walk at several different speeds would be more appro-
priate to capture the effect of speed on the gait patterns.

Previous studies have proposed methods to lessen the effect of
walking speed on gait [16–20]. For instance, Schreiber et al [17] pro-
posed a method where a correction for the effect of speed is introduced
directly on the computation of the gait indices rather than on the gait
patterns and they demonstrated the validity of the method on a healthy
population. Another method proposed elsewhere [16,18,17–20] is to
estimate the patterns at a given speed using regression methods to
predict the new data based on a dataset of experimental data and then
using the estimated patterns in the calculation of the gait indices. A
regression method for gait-pattern prediction at a specific speed re-
cently proposed has the advantage of being able to predict the entire
pattern for the gait cycle successfully [20]. While this method has been
tested on a broad range of gait speeds for healthy individuals, it hasn’t
yet been applied to a clinical context; neither has it been used to make
the GPS outcome insensitive to gait speed. In this context, we designed
a study where we applied the GPS to evaluate the gait of able-bodied
individuals walking at different speeds, and individuals with stroke
histories walking at their comfortable speed. The GPS was calculated
for the comparison of post-stroke individuals with able-bodied in-
dividuals using the original experimental data (standard GPS) and for
the comparison with the predicted gait patterns at the speed of the post-
stroke individuals (referred to here as Gait Profile Score velocity, GPSv).
Since the GPSv compares the individual’s gait pattern with speed-ad-
justed gait pattern, rather than with an average control group gait
pattern as employed in the standard GPS, we hypothesize that the
proposed GPSv will lessen the effect of gait speed compared to the
standard GPS.

2. Methods

2.1. Participants

Sixteen participants who had stroke histories (8 males, age:
66.9 ± 7.0 years, height: 168.6 ± 7.2 cm, mass: 65.5 ± 7.5 kg; and 8
females, age: 60.1 ± 11.4 years, height: 155.4 ± 5.7 cm, mass:
67.0 ± 12.3 kg) were recruited for the post-stroke group. There were
six individuals with left hemisphere stroke (right paretic) and ten with
right hemisphere stroke (left paretic), of which, 12 ischemic and 4
hemorrhagic and with a mean time after stroke of 76.8 months.
Inclusion criteria were that they: 1) had experienced a single stroke
episode at six months or more prior to the data collection, 2) could walk
at least 10m without any type of assistance, 3) had no history of any
musculoskeletal disorders that could substantially impact the gait pat-
tern, and 4) were able to understand experimental tasks. A control
group was formed with 15 age-matched, able-bodied participants (6
males, age: 59.7 ± 6.1 years, height: 168.7 ± 3.9 cm, mass:
74.9 ± 8.2 kg; and 9 females, age: 58.9 ± 5.8 years, height:
159.6 ± 11.4 cm, mass: 63.9 ± 14.6 kg). These participants were free
of any orthopaedic or musculoskeletal injury in the six months before
the data collection and had no history of neurologic disease. All parti-
cipants read and signed a consent form approved by the local
University.

2.2. Construction of the reference data

To predict the kinematic patterns of the reference dataset at a cer-
tain speed, data collection of able-bodied subjects walking at a range of
gait speeds was required to later interpolate the gait patterns at any
desired speed within this range based on the method previously pro-
posed [20]. For such, we had to employ a treadmill to specify and
control these different speeds because subjects could not reproduce
overground walking trials at so many varied speeds. However, most of

the older adults we evaluated who had stroke histories were unable to
walk independently on a treadmill. Given that and to avoid a direct
overground-treadmill gait comparison between different populations,
which would introduce another confounding factor into our group
comparison, we adopted a hybrid procedure to create the reference
dataset with a range of gait speeds. We collected data for able-bodied
subjects walking on the treadmill at different speeds as well as over-
ground at their comfortable speed. Then, for each kinematic variable
(X) of an able-bodied subject walking at each speed on the treadmill (vi)
(XVi@treadmill), we subtracted its mean value at the comfortable speed on
the treadmill (X̄Vcomf@treadmill) and added its mean value at the comfor-
table speed on overground (X̄Vcomf@overground). That is, we simply shifted
the values on the treadmill by a constant value based on a possible
variation between the two environments at the comfortable speed,
mathematically:

= − +−X X X X¯ ¯Vi treadmill overground Vi treadmill Vcomf treadmill Vcomf overground@ @ @ @

This reference data is designated as a treadmill-overground dataset
(see Fig. 1 in the Supplementary material for an example of data before
and after this procedure).

2.3. Data acquisition

We employed standard gait analysis procedures for data collection
using a motion capture system with 1) 12 cameras (Raptor-4, Motion
Analysis Corporation, Santa Rosa, CA, USA); 2) five force platforms
(three 40× 60 cm model Optima, AMTI, Watertown, MA, USA; two
40× 60 cm model 9281 EA, Kistler, Switzerland) embedded on the
floor; and 3) a dual-belt instrumented treadmill (FIT, Bertec, Columbus,
OH, USA) in a 10× 12m room at the Laboratory of Biomechanics and
Motor Control, Federal University of ABC, Brazil. Kinematic data were
acquired at 150 Hz, and the ground reaction force data were acquired at
300 Hz by the motion capture system (Cortex 6.0, Motion Analysis
Corporation, Santa Rosa, CA, USA). For this study, ground reaction
forces data were used for gait event detection purposes. Before the data
collection, leg length (defined as the distance from the anterior superior
iliac spine [ASIS] to the ipsilateral medial malleolus), mass, and stature
of each participant were measured. Twenty-six retro-reflective markers
were attached to the pelvis and lower limbs according to a biomecha-
nical model previously described [20,21].

For the control group, to define the comfortable speed, each parti-
cipant performed three walking trials barefoot at their comfortable
speed along a 10-m flat walkway. The mean gait speed was calculated
and then normalized based on the participant’s leg length [22]. Fol-
lowing this, each participant performed at least five walking trials at
their comfortable speed, and these data were used in further analysis.
For a more reliable gait evaluation at different speeds, we also asked
each participant in the control group to walk on an instrumented
treadmill. First, they walked for 5min at their previously defined and
self-selected comfortable speed. Next, they walked at each of the eight
different controlled speeds (40%, 55%, 70%, 85%, 100%, 115%, 130%,
and 145% of their self-selected speed) in a randomized order for 90 s
where the data were recorded in the last 60 s of the trial. For the post-
stroke group, each participant walked barefoot only at their comfor-
table speed on a 10-m walkway.

2.4. Data analysis

Kinematic and kinetic data were filtered with a fourth-order low-
pass Butterworth filter and a cut-off frequency of 10 Hz. The definition
of the segment anatomical reference frames was performed according
to Leardini et al. [21]. The 15 kinematic variables proposed on the GPS
[1] were calculated: angles for the pelvic tilt, obliquity, and rotation;
and for both sides of the body, hip flexion, abduction and rotation, knee
flexion, ankle dorsiflexion, and foot progression. Kinematic time-series
curves were time-normalized with 51 points over the gait cycle, and the
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data were processed in Visual3D software (C-motion Inc., Germantown,
MD, USA). We calculated the time-normalized ensemble average across
participants at their comfortable speed to serve as the reference dataset.
The GVS was computed as the root-mean-square (RMS) difference be-
tween the participant’s speed and the average from the reference da-
taset for each of the kinematic variables. Then, the GPS was computed
as the RMS average of all the GVS values [1].

We predicted the kinematic patterns of the reference dataset for the
participant’s speed based on a regression method previously described
[20] using the following steps. First, we adjusted a first or a second-
order polynomial (based on the goodness of fit) to the values of the
reference dataset versus the corresponding gait speeds for each instant
of the gait cycle to obtain the parameters of the regression. Second, we
employed these regression parameters to predict the new values of the
gait pattern at any specific speed. The GVS and GPS values were then
calculated on these speed-adjusted data and are referred to as GVSv and
GPSv, respectively.

2.5. Statistical analysis

Descriptive statistics of the dependent variables are presented as a
mean and standard deviation. Shapiro-Wilk’s tests were applied to ex-
amine the normal distribution for both GVS/GVSv and GPS/GPSv

methods. To determine the difference between groups, either Student’s
t-test or the non-parametric Mann-Whitney test was applied when the
normality assumption was not found. Additionally, we calculated the
absolute difference between GPS and GPSv methods and then, we verify
the relationship of it with the dimensionless speed. For that, the
Pearson correlation coefficient and linear regression by least squares
were calculated. The adjusted correlation coefficient and the 68%
prediction interval were also calculated for the fits. A statistically sig-
nificant difference was considered for a p-value<0.05.

3. Results

Gait speed at the comfortable condition for each subject in the
control and post-stroke group is described in Table 1. For the control-
group subjects, the GPS index presents a non-linear relation with gait
speed (r= 0.45, p < 0.001; see Fig. 1). However, there is a significant
variation between subjects for the GPS vs. speed. Once part of this
between-subject variability is removed by computing only the change
of GPS for each subject at different speeds in relation to the GPS at the
comfortable speed (ΔGPS), the non-linear relationship between speed
and GPS is more pronounced (r= 0.79, p < 0.001). When we employ
the prediction method to adjust the reference data for the difference in
speed, the effect of speed is mitigated for both the GPSv and ΔGPSv (see
Fig. 1).

On average, the post-stroke group walked at a comfortable gait di-
mensionless speed slower than the control group (stroke: 0.28 ± 0.09,
control: 0.42 ± 0.06; d=1.86, p < 0.001). For example, Fig. 2 shows
plots of the knee flexion angle for the gait cycle of a post-stroke par-
ticipant compared with the same variable from the experimental re-
ference data at the comfortable speed and the predicted speed-depen-
dence variable for this post-stroke participant. Table 2 shows the
average gait variable score (GVS and GVSv) across subjects of each
group (plots with the individual values per subject can be found in the
Supplementary material to this article). When comparing the post-
stroke with the control subjects as a whole, none of the differences
between the GVS and GVSv values were statistically significant, nor
were the overall differences between the GPS and GPSv values (GPS:
8.0 ± 3.1°, GPSv: 7.7 ± 3.2°; d=0.10, p=0.774). However, a ne-
gative correlation between the absolute difference in the GPS and GPSv

values for the participants of the post-stroke group and the gait speed
was observed (ρ=−0.63, p=0.009, see Fig. 3).

Fig. 4 shows the Movement Analysis Profile for the post-stroke
participant with the largest absolute difference between the two tech-
niques (v= 0.19 dimensionless gait speed). The greatest difference for
this participant between the GVS and GVSv values was for the left knee
angle (5.1°), and on average across all variables, the absolute difference
between the GPS and GPSv values was 1.5°.

4. Discussion

The purpose of this study was to investigate the effect of gait speed
on the GPS of post-stroke individuals who tend to walk slower than
typical able-bodied subjects, employing a technique for predicting the
gait patterns of the able-bodied subjects at the similar speeds of the
post-stroke individuals for the comparison. The method for the pre-
diction of gait patterns at a specific speed was successfully tested in
controlled conditions with able-bodied subjects walking at different
speeds [20].

The relationship between gait speed and the GPS index for the
control-group subjects, where each one walked at different speeds
ranging from very slow to very fast, is nonlinear, and a concave-upward
parabola with a minimal GPS value captured it at the subject’s com-
fortable speed. Such nonlinear dependence hasn’t been described before
and serves as an awareness for the application of linear methods to
investigate the relationship between gait speed and biomechanical
variables.

The GPS index has been widely used as a measure of the overall gait
pattern. It has been applied to different clinical conditions
[1,5,6,23–26] including post-stroke individuals [27]. However, they
were either studies comparing the walking pattern of pathological in-
dividuals with healthy controls walking at their self-selected comfor-
table speed [1,5,6,23,24] or assessing the reliability of GPS [27]. Given
that pathological individuals tend to walk slower than healthy people,
the results of these studies may be biased since it is not possible to
determine whether the differences were due to gait impairment or only
because of gait speed differences. In the present study, individuals in
the post-stroke group walked slower than healthy controls. Previous
studies have reported a slower gait speed in post-stroke individuals
compared with healthy ones, but the comfortable walking speed of the
post-stroke individuals in the present study was 0.80m/s (range:
0.39–1.27m/s), which was more extensive than reported in other stu-
dies for individuals with a similar clinical condition: on average,
0.44m/s and 0.56m/s [13,14]. The larger comfortable speed of the
post-stroke individuals investigated here is likely because individuals in
the present study had their stroke episodes a longer time ago (on
average 76.8 months) than the individuals of those studies (median of
31 days [13] and mean of 36.4 months [14]).

We hypothesized that the proposed GPSv would be less affected by
the difference in gait speeds between groups than the standard GPS.
Overall, the difference between the GPS and GPSv across the post-stroke

Table 1
Comfortable speed (m/s) of each subject in the control and post-stroke groups.

# subject Control Post-stroke

1 1.01 1.02
2 1.20 1.27
3 1.33 0.39
4 1.45 0.70
5 1.44 0.55
6 1.10 0.65
7 1.10 1.19
8 1.30 0.51
9 0.98 0.65
10 1.28 0.68
11 1.41 1.11
12 1.33 0.62
13 1.19 0.58
14 0.91 0.98
15 1.27 1.03
16 – 0.71
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individuals was small (0.50° on average, range from 0.02° to 1.43°) and
not statistically significant, contrary to our hypothesis. However, a
subject-by-subject analysis revealed that the participants of the post-
stroke group were very heterogeneous regarding their comfortable
speed; some of them even presented similar speeds to the control group.

There was also a significant negative linear relationship between the
absolute difference of the GPS and GPSv values for the participants of
the post-stroke group with gait speed (Fig. 3, ρ=−0.63, p=0.009). A
similar relationship was observed for the individuals in the control

group at both ranges of slower and faster speeds than the comfortable
speed (Fig. 4, Supplementary material). This indicated that a greater
difference between the speeds and the normative database resulted in a
greater difference between the GPS and GPSv values, which is in
agreement with our hypothesis. For instance, the differences between
GPS and GPSv for the individuals in the post-stroke group with the
slowest speeds ranged between 0.4° and 1.47° (see the Movement
Analysis Profile in Fig. 4 for the post-stroke individual with one of the
slowest gait speeds, v= 0.19 dimensionless speed or 0.55m/s, with a
difference of about 1.4°).

The computation of both GPS and GPSv might also be useful to
understand how the gait patterns of individuals with gait abnormality

Fig. 1. GPS (top graphs) and the change in the GPS in relation
to its value at the comfortable speed (ΔGPS, bottom graphs)
for the not adjusted (GPS, left graphs) and speed adjusted
(GPSv, right graphs) versus dimensionless speed for all parti-
cipants and gait speeds in the control group. Also shown are 1)
the least-square fit by a parabola (thick line), 2) the 68%
prediction interval (shaded area), and 3) the adjusted coeffi-
cient of correlation for the fit (r).

Fig. 2. Example of the variable knee flexion angle for the post-stroke partici-
pant with the slowest gait speed (Stroke data: v= 0.13, grey line) compared
with the data from the database at the comfortable speed (Experimental data:
v= 0.42, solid line) and the data after the speed-dependent prediction
(Predicted data: v= 0.13, dashed line). The GVS and GVSv for this variable are
then calculated based on the RMS difference between the two corresponding
curves.

Table 2
Mean (± 1 SD) across subjects of the GVS and GVSv values for the right and left sides and the corresponding effect size (d) and p-value for the statistical test.

Variable [o] Right side Left side

GVS GVSv d, p GVS GVSv d, p

Pelvic tilt – – – 5.2 ± 3.4 5.1 ± 3.2 0.04, 0.910
Pelvic obliquity – – – 3.2 ± 1.4 2.8 ± 1.4 0.30, 0.133
Pelvic rotation – – – 5.4 ± 5.0 5.6 ± 4.8 −0.03, 0.346
Hip flexion 10.1 ± 5.6 9.0 ± 5.3 0.20, 0.255 8.0 ± 3.8 7.6 ± 3.9 0.10, 0.771
Hip adduction 6.4 ± 2.7 4.9 ± 2.5 0.56, 0.127 3.8 ± 1.6 3.7 ± 1.7 0.02, 0.492
Hip rotation 8.4 ± 7.8 8.6 ± 8.1 −0.02, 0.462 8.3 ± 4.1 8.0 ± 4.6 0.07, 0.855
Knee flexion 7.6 ± 3.4 7.3 ± 3.6 0.08, 0.827 10.2 ± 5.0 9.6 ± 4.3 0.12, 0.731
Ankle dorsiflexion 5.3 ± 3.5 5.1 ± 3.4 0.05, 0.433 5.6 ± 2.2 4.8 ± 2.7 0.30, 0.068
Foot progression 7.3 ± 7.1 7.5 ± 7.0 −0.02, 0.418 9.6 ± 6.8 9.6 ± 6.9 0.01, 0.492

Fig. 3. Absolute difference between the GPS and GPSv values versus the di-
mensionless speed for all participants in the post-stroke group. The vertical
dashed line represents the mean gait speed of the control group.
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might be differently affected by speed. In Fig. 3, the plot of the absolute
difference between GPS and GPSv versus gait speed, the two subjects at
speed ˜ 0.2 presented the largest deviations from the regression line and
their distinct GPS and GPSv values are shown in Fig. 3 of the Supple-
mentary material (third and fifth subjects at that plot). Note that for
those two subjects, the alterations in their gait patterns were more af-
fected by speed than for the other individuals because when the cor-
rection for speed was introduced, their GPSv dropped relatively more
than for the other individuals. So, looking at both GPS and GPSv values,
one can infer which individuals have their gait patterns more affected
by speed; this information might be useful in the rehabilitation process.

There were limitations in this study that need to be acknowledged.
Despite the advantages of the GPS compared with other gait indices, the
application of other methods such as GDI and GGI were not considered
in the present study. Additionally, as only older adults were analyzed,
the results of the present study are applicable particularly to this age
group. Moreover, due to the higher variability of the walking speed
among our participants, it seems thus necessary to consider a larger
sample size and to apply this new method to individuals with other
disorders to conclusively demonstrate the usefulness of such method in
the clinical context.

In conclusion, a modified version of the GPS, the Gait Profile Score
velocity (GPSv), is effective in reducing the impact of gait speed on GPS.
However, the observed difference between the two methods was only
around 1° for the slowest individuals in comparison to the reference
dataset. Considering that the minimal clinically significant difference
for the GPS is 1.6° [23], a discrepancy between GPS and GPSv of around
1° could be enough to alter the interpretation of an individual’s gait
pattern based solely on the GPS result.
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