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A B S T R A C T

Background: Gait speed is one of the main biomechanical determinants of human movement patterns. However,
in clinical gait analysis, the effect of gait speed is generally not considered, and people with disabilities are
usually compared with able-bodied individuals even though disabled people tend to walk slower.
Research questions: This study proposes a simple way to predict the gait pattern of healthy individuals at a
specific speed.
Methods: The method consists of creating a reference database for a range of gait speeds, and the gait-pattern
prediction is implemented as follows: 1) the gait cycle is discretized from 0 to 100% for each variable, 2) a first
or second-order polynomial is used to adjust the values of the reference dataset versus the corresponding gait
speeds for each instant of the gait cycle to obtain the parameters of the regression, and 3) these regression
parameters are then used to predict the new values of the gait pattern at any specific speed. Twenty-four healthy
adults walked on the treadmill at eight different gait speeds, where the gait pattern was obtained by a 3D motion
capture system and an instrumented treadmill.
Results: Overall, the predicted data presented good agreement with the experimental data for the joint angles
and joint moments.
Significance: These results demonstrated that the proposed prediction method can be used to generate more
unbiased reference data for clinical gait analysis and might be suitably applied to other speed-dependent human
movement patterns.

1. Introduction

Biomechanical patterns of human motion are generally speed-de-
pendent, that is, the amplitude of specific movement typically scales
with the movement speed (e.g., walking speed is a determinant factor of
the gait pattern) [1,2]. In a typical gait analysis, patients perform gait
trials at their comfortable speed and their gait patterns are commonly
compared with a reference pattern from a normative database. While
this approach may be reasonable, previous studies have reported that
individuals with certain pathologies tend to walk slower than able-
bodied individuals [3,4]. However, the effect of gait speed is generally
not accounted for when the gait pattern of pathological individuals is
compared with healthy ones who do not necessarily walk at an
equivalent speed.

A possible solution to this problem would be to collect several
walking trials at various walking speeds to build a reference database
for virtually any possible gait speed. However, the time-consuming
nature of such data collection would be cost prohibitive and unviable.

To overcome this challenge, researchers have proposed regression
methods as a feasible alternative for predicting gait parameters based
on experimental data [5–7]. Those studies predicted gait patterns based
only on specific events. Or, when the full gait cycle was considered, the
prediction data was based solely on the normal, slow, and fast walking
speeds for healthy subjects and only at each 10% interval of the gait
cycle [8]. However, because pathological individuals may walk slower
than the typical “slow speeds” of healthy subjects, a wider range of gait
speeds is likely necessary. In addition, a prediction method for the
entire gait cycle at a higher temporal resolution would allow re-
searchers and clinicians to apply standard techniques of analysis com-
monly employed in the field. In this context, the purpose of this study
was to develop a simple way to predict the gait pattern of able-bodied
individuals at a given speed, considering a broad range of speeds and
the entire gait cycle.

https://doi.org/10.1016/j.gaitpost.2018.12.006
Received 27 July 2018; Received in revised form 26 November 2018; Accepted 4 December 2018

⁎ Corresponding author at: Universidade Federal do ABC, Rua Arcturus, 3, 09606-070, São Bernardo do Campo, SP, Brazil.
E-mail address: duartexyz@gmail.com (M. Duarte).

Gait & Posture 68 (2019) 280–284

0966-6362/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09666362
https://www.elsevier.com/locate/gaitpost
https://doi.org/10.1016/j.gaitpost.2018.12.006
https://doi.org/10.1016/j.gaitpost.2018.12.006
mailto:duartexyz@gmail.com
https://doi.org/10.1016/j.gaitpost.2018.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gaitpost.2018.12.006&domain=pdf


2. Materials and methods

To nullify the possible effect of speed when comparing a patient's
gait with a normative database, we proposed to predict the gait patterns
of the reference dataset at the speed of the investigated patient by
creating a reference dataset with walking data at different speeds. Then,
we determined regression models for the gait patterns with speed as the
predictor variable. This prediction method can be implemented with
the following procedure:

1 Build a reference dataset of the gait pattern acquired at different
speeds, ranging from very slow to very fast, and perform the stan-
dard signal processing of these data (e.g., see graph A on Fig. 1);

2 For each instant of the gait cycle (e.g., 101 instants) of a given ki-
nematic or kinetic variable of each participant, plot the average
value across trials (the dependent variable or response) versus the

corresponding dimensionless gait speeds (the independent variable
or predictor) (e.g., see graph B on Fig. 1);

3 To these data, at each instant for all subjects of the reference da-
taset, adjust a second-order polynomial using a least-squares
method:

= + +y i av bv c( ) 2

where y(i) represents each kinematic/kinetic variable at instant i, v is
the dimensionless walking-speed, and a, b, and c are the coefficients of
the regression curve.

4 These adjusted curves (e.g., 101 parabolas for the entire gait cycle of
each kinematic and kinetic variable) can now be used to predict the
new gait cycle value for a given dimensionless speed.

A one-standard-deviation interval (± 1 SD) for the prediction data
at each instant (e.g., see graph C on Fig. 1) can be estimated by

Fig. 1. A. Example of knee angle at the sagittal plane versus the
gait cycle of all participants over the range of gait speeds (thin
curves). The average pattern of the experimental data across all
participants at the self-selected comfortable speed (S5) is dis-
played by the thick curve and the respective predicted data by the
dashed thick curve. The vertical line marks the instant 65% of the
gait cycle. B. Knee angle versus the dimensionless gait speed at
instant 65% of the gait cycle to illustrate the prediction method.
The adjusted curve also shows the predicted values for the eight
speeds (filled circles) and the±1 SD interval. The experimental
values (dots) and the predicted value for the comfortable speed
(S5) (plus symbol) are also drawn. C. Average pattern of the ex-
perimental data across all participants at the self-selected com-
fortable speed (S5) (continuous curve) and its respective predicted
data (dashed line) with the 68% (±1SD) prediction interval
(shaded curve).
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calculating the 68% prediction interval for the polynomial regression
using the equation [9]:
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where t68 represents the 68th percentile of the Student’s t-distribution
with N-3 degrees of freedom. N is the number of observations, serr is the
standard deviation of the error, and ȳ is the mean of y.

The second-order polynomial may in fact not be the best model to fit
the data, and a first-order polynomial might be sufficient (however, this
was seldom true for the present data). The selection of the order of the
polynomial was based on the statistical significance of the coefficient a
of the second-order polynomial regression. If this coefficient was not
significant (not statistically different from zero), then a first-order
polynomial was employed.

2.1. Participants

Twenty-four able-bodied adults (14 males and 10 females; age:
27.6 ± 4.4 years; height: 171.1 ± 10.5 cm; mass: 68.4 ± 12.2 kg)
were recruited for this study. All participants were free of any lower
extremity injury and presented no history of any orthopedic or neuro-
logic disease.

2.2. Procedures

Each participant performed walking trials in a barefoot condition at
different speeds, ranging from very slow to very fast based on their self-
selected comfortable speed. Because leg length can affect the walking
speed [10], the gait speed was previously adjusted based on the di-
mensionless speed (the square root of the Froude number). The com-
fortable speed was obtained based on the average of three overground
walking trials at their self-selected comfortable speed along a 10-m
walkway. After, each participant walked on a treadmill at his or her
self-selected comfortable speed for 5min. Following this, they walked

at each of the eight controlled speeds in a randomized order: 40%, 55%,
70%, 85%, 100%, 115%, 130%, and 145% of their self-selected com-
fortable speed. For each walking trial, at each speed, the data were
recorded in the last 30 s of the trial. More details about the data col-
lection and procedures are reported by Fukuchi et al. [11].

The biomechanical model of the lower limbs and pelvis adopted was
based on a previous protocol proposed for gait analysis [12]. Kinematic
data were acquired using a motion capture system with 12 cameras
(Raptor-4, Motion Analysis Corporation, Santa Rosa, CA, USA) at
150 Hz, and kinetic data were collected via an instrumented dual-belt
treadmill (FIT, Bertec, Columbus, OH, USA) at 300 Hz.

2.3. Data analysis

Marker trajectories and force data were filtered using a fourth-order
low-pass Butterworth filter with cut-off frequency of 10 Hz. The kine-
matic and kinetic curves were time-normalized with 101 points evenly
distributed over the gait cycle. The data processing and calculations
were performed in Visual3D software (C-motion Inc., Germantown,
MD, USA).

2.4. Statistical analysis

A linear or second-order polynomial for the fitting gait variable
versus gait speed was adjusted by the least-squares method and a 68%
prediction interval (± 1 standard-deviation interval) for the adjusted
function was also determined. The validation of the prediction method
was done by using the root mean square error (RMSE) as a metric for
the accuracy of the prediction comparing the comfortable data with the
experimental gait pattern (RMSE c–e), and the experimental data with
the predicted gait pattern (RMSE e–p) of the reference dataset.
Differences between the two metrics were compared performing
Students t-test or Mann-Whitney U tests (α=0.05). Additionally, 10-
fold stratified cross-validation was applied to evaluate the performance
of the prediction method and to evaluate its generalizability [13]. For

Fig. 2. Average patterns for the joint angles (top) and joint moments (bottom) of the experimental data across all subjects (solid lines) and predicted data (dashed
lines) based on the dataset at the different gait speeds.
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this, the dataset was divided into ten equal random subsets with nine
subsets used to fit the data and the remaining subset was used to test the
method.

3. Results

Participants’ average walking speeds ranged from 0.13 to 0.78 di-
mensionless speed (from 0.39m/s to 2.20m/s). Fig. 2 shows average
patterns of experimental and predicted joint angles and moments across
subjects at all eight speeds. Individual curves of the experimental and
predicted joint angles and joint moments are plotted in the Supple-
mental material.

Overall, the predicted data corresponded well to the experimental
data for the dataset; the RMSE between the experimental and the pre-
dicted data (RMSE e–p) across all speeds, variables, and subjects was
0.48 ± 0.22° for the joint angles and 0.02 ± 0.01 Nm for the joint
moments. In contrast, the RMSE between the comfortable and experi-
mental (RMSE c–e) was 2.79 ± 2.05° for the joint angles and
0.10 ± 0.07 Nm for the joint moments. The 10-fold stratified cross-
validation presented an accuracy of 96.9% for the joint angles, and
98.6% for the joint moments. The prediction for the gait data of each
subject at different speeds was performed based on the average of the
entire experimental data (the dataset). We found that the RMSE values
were lower for the comparison “experimental data versus predicted
data” (RMSE e–p) than for the comparison “comfortable speed versus
experimental data” (RMSE c–e) for all the slower walking speeds as well
as for walking speeds that were faster than the comfortable speed for
the majority of joint angles and joint moments (p < 0.05) (Fig. 3; and
Table 1 Supplementary material). Individual RMSE values for each joint
angle and joint moment graphs are also plotted in the Supplemental
material.

4. Discussion

We proposed a simple technique to predict the gait pattern of able-

bodied individuals at a specific speed. This prediction method was
validated in two ways. First, we compared the patterns acquired ex-
perimentally at different speeds with the predicted pattern for that
speed based solely on the data of the same subject (RMSE e–p) (we
performed this comparison for 24 subjects). Second, we created a re-
ference dataset with the gait patterns of those 24 subjects and compared
with the average of the dataset (acting as a reference dataset) (RMSE
c–e). This second comparison mimics a real scenario where a reference
gait dataset is available, and one wants to compare these data with the
experimental data of a patient likely evaluated at a different gait speed
(in the present case, each subject of the dataset acted as an experi-
mental subject versus the control given by the entire dataset).

The method we proposed to predict the gait pattern at a given speed
presented good agreement with the experimental data of each subject
for the joint angles and joint moments in a range of speeds from
0.39m/s to 2.20m/s. The greater the difference in gait speed between
the reference dataset and the experimental data, the greater the dif-
ference between the predicted data and the reference dataset without
the prediction. The prediction method proposed, seems to mitigate the
effects of the gait speed especially at lower speeds in some subjects, but
did not totally nullify them. Thus, future study with a larger sample is
needed to improve this method.

Compared with the present study, previous prediction methods
were based on specific gait events (e.g., peaks) [5–7] or on walking data
acquired either at the comfortable speed [7] or only at comfortable,
slow, and fast speeds [6,8]. One study employed a prediction method
based on the entire curve at each 10% interval of the gait cycle by
applying a linear regression method [8]. However, only a linear re-
gression prediction method was implemented, which was different from
the quadratic regression used in the present study.

Given the characteristics of the prediction method proposed, the
range of speeds used to build the dataset must include the speed at
which one wishes to predict; the proposed method can only perform
interpolation, not extrapolation, to predict the pattern. To parameterize
the relation between the amplitude of motion and gait speed, a linear or

Fig. 3. RMSE values (mean±1 standard error of the mean) across subjects of the joint angles and moments at the sagittal plane for the comparisons “comfortable
speed versus experimental data” at different speeds (comfort-exper., circles) and “experimental versus predicted data” (exper.-predicted, squares).
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a second-order polynomial function was chosen. Overall, the relation-
ship between the kinematic and kinetic variables and speed were ty-
pically non-linear. The parabola is a convenient mathematical function
able to capture the observed nonlinearities, and it has only three
parameters for adjustment. Nevertheless, another function for adjust-
ment could be used as long as this function can capture the behavior of
the data.

To make the prediction method more accessible, we prepared two
Excel spreadsheets as supplementary material. The Adults.xlsx in
Supplemental material spreadsheet contains the equations derived from
the present data to predict the gait patterns at any gait speed (reliable
for a range of 0.13 to 0.78 dimensionless speed). The Children.xlsx in
Supplemental material spreadsheet contains the prediction equations
derived from data in the Schwartz and collaborators [1] study of chil-
dren with an average age of 10.5 years walking at five different speeds.
Since previous studies stated that walking speed and not age is the main
determinant of the gait pattern in this population [1,2], this range of
speed would be necessary to understand this condition better. Contrary
to this, as age has been reported to influence the gait pattern in children
with an average age of 3.6 years [14], the gait pattern in younger
children that is not maturated yet seems to be more affected at a greater
extent by age than speed. Nevertheless, future study should further
explore the relative contribution of age on the gait pattern.

In summary, the proposed technique successfully predicted speed-
specific joint angles and joint moments patterns in able-bodied in-
dividuals for any gait speed. This prediction reduces the difference
compared with the reference dataset since it compares the experimental
gait pattern with the predicted one at the same gait speed. This method
may be adapted to generate a more unbiased reference normative data
to be used to evaluate the gait pattern of pathological individuals, or it
may even be suitable for application to other speed-dependent human
movement patterns.
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