Comments on "Ellipse area calculations and their applicability in posturography" (Schubert and Kirchner, vol.39, pages 518-522, 2014)

Marcos Duarte*
Biomedical Engineering, Federal University of ABC, Santo André, Brazil

ARTICLE INFO

Article history:

Received 22 July 2014
Received in revised form 1 August 2014
Accepted 11 August 2014

Keywords:

Balance
Posture
Posturography
Signal processing
Statistics

Dear Editor:

I would like to congratulate the authors for the article regarding the calculation of the so-called ellipse area [1]. As the authors indicated, the algorithms employed to calculate the area of the 95\% prediction ellipse using the chi-square or the Rayleigh distribution are in fact only exact when the number of samples of the bivariate variable tends to infinite (when each univariate variable is assumed to have a normal distribution) [2]. As the authors also observed, for a typical data size in posturography, 30 s of data sampled at 100 Hz (3000 samples), this approximation is probably good enough, since the error is only 0.1%. The problem appears when the data size is much less: for 100 samples, the error is 2.5%, and for 10 samples, the error is 26%. These last two cases are unlikely scenarios in posturography, but possible for an unadvised user; and besides, the prediction ellipse area can be employed in any other data analysis. The authors described the calculation (see the supplementary data in [1]) but did not publish any algorithm to compute the exact 95% prediction ellipse area. They only made available the algorithm with the known approximation (i.e., they used the chi-square distribution and not the F distribution for the exact calculation). To fill this lacuna, at the end of this letter it is presented a computer program to calculate the exact 95% prediction ellipse area [2] for a Matlab-like environment software

[^0]and the same algorithm implemented in the Python language, a free and open source software. The program input, the variable 'data', has ' n ' rows (the number of samples) and two columns for a bivariate data. In fact, this computer program is written to also calculate the hypervolume of a hyper-ellipsoid (with p dimensions) if 'data' has p columns. Briefly, the volume of the hyperellipsoid is calculated with the same equation for the volume of a p-dimensional ball (http://en.wikipedia.org/wiki/Volume_o-f_an_n-ball) with the radius replaced by the semi-axes of the hyper-ellipsoid. The variable 'hypervolume' contains the calculated ellipse area for 2-D data or the hypervolume for p-dimensional data.

The webpage 'Prediction ellipse and prediction ellipsoid' at the website https://github.com/demotu/BMC contains a detailed explanation about the prediction ellipse and a more complete code written in Python to compute and plot the results and other variables.

[^1]| \# Python code to calculate the hypervolume of the exact 95% prediction hyper-ellipsoid: | |
| :---: | :---: |
| import numpy as np | \# import Numpy package |
| from scipy.stats import f as F | \# import F distribution |
| from scipy.special import gamma | \# import Gamma function |
| $\mathrm{n}, \mathrm{p}=$ np.asarray(data).shape | \# 2-D array dimensions |
| $\operatorname{cov}=\mathrm{np} \cdot \operatorname{cov}$ (data, rowvar $=0$) | \# covariance matrix of data |
| $\mathrm{U}, \mathrm{s}, \mathrm{Vt}=\mathrm{np} . \mathrm{linalg} . \mathrm{svd}(\mathrm{cov})$ | \# singular value decomposition |
| $\begin{gathered} \mathrm{f} 95=\mathrm{F} . \mathrm{ppf}(.95, \mathrm{p}, \mathrm{n}-\mathrm{p})^{*}(\mathrm{n}-1)^{*} \\ \mathrm{p}^{*}(\mathrm{n}+1) / \mathrm{n} /(\mathrm{n}-\mathrm{p}) \end{gathered}$ | \# F 95 percent point function |
| saxes $=$ np.sqrt($\mathrm{s}^{*} \mathrm{f95}$) | \# semi-axes lengths |
| $\begin{aligned} & \text { hypervolume }=\text { np.pi**(p/2)/ } \\ & \text { gamma(p } / 2+1)^{*} \text { np.prod(saxes) } \end{aligned}$ | |
| hypervolume | |

Conflicts of interest statement

There author declares no conflicts of interest.

References

[1] Schubert P, Kirchner M. Ellipse area calculations and their applicability in posturography. Gait Posture 2014;39:518-22.
[2] Chew V. Confidence, prediction, and tolerance regions for the multivariate normal distribution. J Am Stat Assoc 1966;61:605-17.

[^0]: * Tel.:+55 1123206363.

 E-mail address: duartexyz@gmail.com

[^1]: \% Matlab code to calculate the hypervolume
 of the exact 95% prediction hyper-ellipsoid:
 [n, p] = size(data);
 \% 2-D array dimensions
 covar $=\operatorname{cov}($ data $)$;
 \% covariance matrix of data
 [U, S, V] = svd(covar);
 $\mathrm{f} 95=\mathrm{finv}(.95, \mathrm{p}, \mathrm{n}-\mathrm{p})^{*}(\mathrm{n}-1)^{*}$
 $p^{*}(n+1) / n /(n-p) ;$
 saxes $=\operatorname{sqrt}\left(\operatorname{diag}(S)^{*} \mathrm{f} 95\right)$;
 \% F 95 percent point function
 hypervolume $=\mathrm{pi}^{\wedge}(\mathrm{p} / 2) / \mathrm{gamma}$
 $(\mathrm{p} / 2+1)^{*} \operatorname{prod}($ saxes $)$

