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Abstract Aging is known to have a degrading influence

on many structures and functions of the human sensori-

motor system. The present work assessed aging-related

changes in postural sway using fractal and complexity

measures of the center of pressure (COP) dynamics with the

hypothesis that complexity and fractality decreases in the

older individuals. Older subjects (68 ± 4 years) and young

adult subjects (28 ± 7 years) performed a quiet stance task

(60 s) and a prolonged standing task (30 min) where sub-

jects were allowed to move freely. Long-range correlations

(fractality) of the data were estimated by the detrended

fluctuation analysis (DFA); changes in entropy were esti-

mated by the multi-scale entropy (MSE) measure. The DFA

results showed that the fractal dimension was lower for the

older subjects in comparison to the young adults but the

fractal dimensions of both groups were not different from a

1/f noise, for time intervals between 10 and 600 s. The MSE

analysis performed with the typically applied adjustment to

the criterion distance showed a higher degree of complexity

in the older subjects, which is inconsistent with the

hypothesis that complexity in the human physiological

system decreases with aging. The same MSE analysis per-

formed without adjustment showed no differences between

the groups. Taken all results together, the decrease in total

postural sway and long-range correlations in older indi-

viduals are signs of an adaptation process reflecting the

diminishing ability to generate adequate responses on a

longer time scale.

Keywords Equilibrium � Nonlinear dynamics �
Fractals � Entropy � Time scales

Introduction

One of the factors that has profoundly affected human

evolution is the adoption of bipedal stance. Ever since

humans have begun to stand upright, they have been facing

the challenge to balance the body over a relatively small

area of support. This challenge is apparent in the body

sway that is always present, even when a healthy person

tries to stand as still as possible. Maintaining balance is a

complex control task for the central nervous system and it

is achieved by the integration of different types of sensory

information, predominantly visual, vestibular, and pro-

prioceptive, together with the reliance on the passive

properties of the musculoskeletal system.

Aging is an important factor that can affect the ability to

maintain postural balance. The effects of aging have been

intensely investigated but, thus far, neither are the basic

mechanisms of postural stability sufficiently understood,

nor is it known how to prevent loss of stability in older

individuals. Lipsitz et al. have provided support that a key

signature of aging is the decrease in complexity in the

human system (Lipsitz and Goldberger 1992; Goldberger

et al. 2002b; Lipsitz 2002, 2004). For example, the authors

have shown that the structure of fluctuations of the cardiac

signals, i.e., their complexity, is significantly different in

young and older adults (Costa et al. 2002; Lipsitz 2002). In

a series of studies Newell et al. have examined isometric

force production and identified differences in complexity in
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older people when producing constant finger forces (Vai-

llancourt et al. 2004).

Structural and dynamical complexity in measured sig-

nals arises from the many spatiotemporal scales in a

biological system. It is ubiquitous and is generally viewed

as the source of the system’s capacity to adapt to a con-

stantly changing environment (Goldberger et al. 2002b;

Lipsitz 2002). However, despite its ubiquity and impor-

tance for understanding human behavior, complexity

remains an elusive concept and no single definition has yet

been agreed upon (Gell-Mann 1995; Costa et al. 2002).

Complexity is not equivalent to variability and it is not

measurable by standard statistical tools like variance. A

more variable system can easily be less complex and vice

versa. It is often associated with a time evolution that has a

rich structure on multiple time scales. With this under-

standing, the sinusoidal time course of a simple harmonic

oscillator is not complex since its structure has only one

time scale and it is fully predictable. A completely random

evolution, on the other hand, like that of a sequence of coin

tosses, is also not complex. Even though the sequence of

events is not predictable, it neither involves multiple time

scales nor does it display the adaptive nature that is typical

of a complex system (Goldberger et al. 2002b; Lipsitz

2002; Vaillancourt and Newell 2002).

The notion of complexity has close kinship with that of

information content in information theory. Information

content is quantifiable by means of entropy which is a well-

defined concept and a number of measures have been

developed. Relating complexity to these ideas have led to

the interpretation that the higher the information entropy in

a time series, the more complex it is. Various algorithms

have been proposed to estimate information entropy, i.e.,

complexity (Pincus 1991; Richman and Moorman 2000;

Costa et al. 2002). Costa et al. (2002) developed a multi-

scale entropy (MSE) analysis building upon the definition

of the so called sample entropy (SE) proposed by Richman

and Moorman (2000). Costa et al. demonstrated that the

MSE curves identified diseased hearts to have a significant

decrease in the sample entropy SE on multiple time scales,

indicating a lower degree of complexity. Motivated by

these advances, the focus of the present study was to

examine the complexity in the time evolution of postural

control and effects of aging on the sway dynamics.

For research and clinical purposes, the ability of the

central nervous system to maintain balance can be assessed

by investigating the sway of a person’s body during

standing. The majority of the previous studies on postural

sway that did not apply external perturbations have focused

on quiet stance where subjects are instructed to ‘‘stand as

still as possible’’. The objective of this instruction is to

examine the postural system at its limit such that the

remaining sway reveals features of the control system.

These studies are naturally confined to a relatively short

time of recording due to fatigue (a few minutes maximum).

Standing in daily life often occurs over a prolonged per-

iod (longer than a few minutes), for example when waiting in

a line or while talking with somebody. This kind of standing

is less constrained and is typically interspersed with recur-

rent, self-induced changes in the body configuration. These

changes are performed almost unconsciously and cannot be

generally associated with any external stimulus. Such nat-

ural prolonged standing is not as fatiguing as standing still

and can also easily be reproduced in the laboratory. By

looking at the COP displacements during prolonged stand-

ing over 30 min, Duarte and Zatsiorsky (1999) associated

the postural changes to three types of change in the COP

data: (1) shifting—a fast displacement of the average posi-

tion of the COP from one region to another (step-like); (2)

fidgeting—a fast and relatively large displacement followed

by a return of the COP to approximately the same position

(pulse-like); (3) drifting—a slow continuous displacement

of the average position of the COP (ramp-like). Applying

other nonlinear measures to these long-time series of COP

displacement in healthy adults such as the Hurst exponent,

detrended fluctuations, and power spectral analyses. Duarte

and Zatsiorsky (2000, 2001) revealed slow and fast fre-

quencies with different amplitudes suggesting fractal

properties and long-range correlations. This fractal property

revealed structural characteristics of the COP data which

have important implications for the control of human bal-

ance (Duarte and Zatsiorsky 2000).

Freitas et al. (2005) were the first to investigate older

individuals standing for a prolonged period to get insight

into the fluctuations on longer spatiotemporal scales. The

authors reported that older individuals swayed approxi-

mately 50% less than young adults and showed a

significant reduction in the amplitude of shifts, but with no

changes in the fidget and drift patterns. Interestingly, this

decrease in sway is in contrast to what was observed during

short quiet standing (60 s) where older individuals showed

approximately 30% more sway, in agreement with what

has been reported before (Horak et al. 1989). In line with

the argument in the literature that aging is characterized by

a decrease in complexity, it can be speculated that this

expresses the general decrease in mobility but it can also

express a change in the complexity of the aging postural

control system. More specifically, it has been hypothesized

that complexity is decreased in older people, supported by

findings such as decreased entropy in the heart rate and

blood pressure dynamics from healthy elderly subjects in

the literature (Costa et al. 2002; Lipsitz 2002).

With the aim to assess the effects of aging on the

complexity and fractality of the postural control system,

the present study analyzed postural sway during prolonged

standing for two groups of subjects, one with older and one
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with younger healthy adults. The study applied measures of

complexity and fractality using tools from nonlinear time

series analysis. The hypothesis is that both complexity,

quantified by multiscale entropy analysis, and fractality,

quantified by detrended fluctuation analysis, of the postural

sway time-series are decreased in the older subjects. Our

hypothesis is that these nonlinear time series analyses will

provide useful information about whether the observed

age-related differences in prolonged standing reflect

structural non-local changes of the postural control

mechanism.

Methods

Participants

Fourteen older individuals at the age of 68 ± 4 years

(mean ± SD, range 61–76 years), height of 1.58 ± 0.08 m

and mass of 64 ± 12 kg participated in the older group.

Fourteen healthy adults with an age of 28 ± 7 years (range

19–40 years), height 1.65 ± 0.11 m, and mass 63 ± 10 kg

were members of the young control group. All older sub-

jects were enrolled in a physical activity program in the

University of Sao Paolo for at least 1 year, which consisted

of moderate physical activities twice a week. These

activities included brisk walking, local muscular endurance

training with light loads, and flexibility exercises. The

intensity of these 30-min exercise programs was qualita-

tively monitored such that they did not cause any excessive

sweating or large increase in heart rate. All participants

reported to have normal or corrected to normal vision.

None of them in the adult group had any known history of

postural or skeletal disorders, but in the older group there

were three subjects with arthritis of the knee and two

subjects who reported to have labyrinthitis. Despite these

self-reports, none of them reported any particular problems

in balance control nor had a history of falling. To test for

interferences in their data, specific comparisons were con-

ducted on the dependent measures of these three subjects.

Results verified that these subjects were not statistically

different from the other older subjects. All participants had

given prior consent to the experimental procedures in

agreement with the Helsinki protocol.

Design and procedure

All participants performed one trial of prolonged standing

for 30 min. Immediately before this long recording, they

also stood in quiet stance for 60 s. In all trials, the partic-

ipants stood barefoot on a force plate (50.8 cm 9 46.4 cm,

AMTI, OR6-WP). In the short quiet-standing trial, partic-

ipants were asked to select a comfortable position with

their feet approximately at shoulder width and to stay as

still as possible looking straight ahead to a point at eye

height. In the prolonged standing task, participants were

allowed to change their posture freely at any time without

specific instructions about how to stand, except the

requirement not to step off the force plate. This instruction

aimed to mimic prolonged standing in regular daily

activities where standing is typically a secondary task

while something else is done. To reproduce the latter

aspect in the laboratory setting, all participants watched a

television program (the same program for all the partici-

pants) on a TV set that was located 2 m in front of the

participant.

Data acquisition and analysis

The forces and their moments were recorded by the force

plate at a 20 Hz sampling frequency and the positions of

the center of pressure (COP) in the anterior–posterior (AP)

and medio-lateral (ML) directions were calculated. The

first typical measure that expresses the total amount of

sway for each participant is the standard deviation (SD) of

the COP displacement in both AP and ML directions.

These results were calculated for each participant for both

short and prolonged standing and were already reported in

Freitas et al. (2005). To study the underlying dynamical

properties of the COP time series, this study used two

different methods to assess the temporal structure of the

fluctuations: the detrended fluctuation analysis (DFA)

(Peng et al. 1995) and the multi-scale entropy (MSE)

method (Costa et al. 2002). The latter measure was only

calculated for the prolonged standing data (36,000 data

points) as long time series are required. It is important to

point out that increasing the sampling frequency only to

increase the number of data points is not a viable solution

to generate the long time series that are necessary for such

analyses. The typical time-length scale in the COP signal is

in the range of tenths of a second to few seconds (95% of

the power of the COP signal during quiet standing is below

1 Hz, Maurer and Peterka 2005). Increasing the sampling

frequency would only artificially increase the number of

data points without adding information.

Detrended fluctuation analysis

The detrended fluctuation analysis (DFA) is a modification

of the root-mean square analysis of a random walk (Feder

1988) but is less sensitive to non-stationarities and noise in

the data (Peng et al. 1995). The DFA exponent was origi-

nally proposed to estimate the fractal dimension of a time

series by measuring the statistical properties of the fluctu-

ations in the time series. The sampled time series u(i) is

first cumulatively summed to obtain an integrated time
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series yðkÞ ¼
Pk

i¼1 uðiÞ; k = 1, 2,…, N. This integrated

time series y(k) of total length N is then parsed into non-

overlapping windows of equal width w, such that there are a

total of N/w windows. Inside each window, the time series

y(k) is detrended by a linear least square fit, denoted by ŷðkÞ.
The root mean square value of the deviations of the time

series y(k) around the time series ŷðkÞ is computed:

FðwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

k¼1

½yðkÞ � ŷðkÞ�2
v
u
u
t

where F(w) is the so-called detrended fluctuation parame-

ter. Note that F is a function of the window width w since

the time series ŷðkÞ depends on the chosen window size. In

a typical time series obtained from a complex biological

system, F(w) obeys a power-law function, i.e., F(w) � wa.

The scaling exponent a, obtained from the slope of the

linear regression of F(w) over w on a log–log scale quan-

tifies the long-range correlations in the time series. For

white noise, the exponent a is known to be 0.5; for 1/f noise

it is 1.0; and for Brownian noise a is 1.5. In the ideal case

of a stationary time series of infinite length, a is mathe-

matically related to the more familiar power spectral

exponent b as follows: a = (1 + b)/2 (Havlin et al. 1988).

Therefore, DFA may be seen as a method in the time

domain that is analogous to power spectral analysis per-

formed in the frequency domain. The fact that a process

presents similar characteristics over different scales is

known as self-similarity. It can be expressed by a power-

law scaling which is also a sign of complexity. Therefore,

the fractal dimension has also been used to describe the

complexity of a process (Lipsitz and Goldberger 1992;

Goldberger et al. 2002a). However, the DFA exponent

itself does not have a direct relation with complexity: a 1/f

noise process is considered maximally complex (a = 1.0),

whereas white (a = 0.5) and Brownian (a = 1.5) noise

have lower or no complexity (Lipsitz 2002).

Multi-scale entropy

The multi-scale entropy (MSE) method aims to measure

the information content of a complex time series on mul-

tiple time scales. In a previously suggested method

Richman and Moorman (2000) defined the so-called sam-

ple entropy (SE) which is well-suited for physiological

data. The basic idea in the definition of SE is to provide a

measure of an ‘‘orderly structure’’ in a time series by

testing if there are any repeated patterns of various lengths,

including those that may not be repeated at regular inter-

vals. To achieve this in a time series with N data points, a

sequence of m successive points is selected from all pos-

sible m-point sequences, i.e., a total of N - m + 1. As a

next step, all m-point sequences that are similar to the

selected one are counted, excluding the selected one itself.

This number is denoted by ni
r,m where the index i denotes

the sequence number and r the similarity radius. The ratio

nr;m
i =ðN � mþ 1Þ gives the probability of finding an m-

point sequence similar to the selected one. The mean of all

of such probabilities, each computed for every possible

different m-point sequence in the time series, gives the

probability that two randomly selected m-point sequences

are similar to each other.

The similarity between two m-point sequences is eval-

uated by calculating the maximum of the component-wise

differences between two arbitrary sequences of length m

[u(k), u(k + 1), u(k + 2),…, u(k + m)] and [u(l), u(l + 1),

u(l + 2),…, u(l + m)] as

d ¼ maxf½uðkÞ � uðlÞ�; ½uðk þ 1Þ � uðlþ 1Þ�; . . .;j
½uðk þ mÞ � uðlþ mÞ�gj:

The two sequences are defined to be similar if d is

smaller than some criterion distance. To facilitate

comparison across different time series with different

variability, this criterion distance is not a fixed quantity

but is normalized for every time series. Costa et al.

recommended the criterion distance to be between 10 and

20% of the standard deviations of the respective time series.

The gain parameter, 0.10 or 0.20 in this case, is referred to

as similarity radius r. Note that the resultant probabilities

strongly depend on this criterion distance and larger values

of r will yield a larger number of similar sequences for any

given sequence length m (Costa et al. 2005).

Now consider two m-point sequences that are similar to

each other. If one more point from the time series is added

to each of them, the two resulting (m + 1)-point sequences

may or may not be similar any longer. The average con-

ditional probability Cr that they are indeed similar can be

written as:

Cr ¼
1

ðN�mþ1Þ
PN�mþ1

i¼1 nr;m
i

1
ðN�mÞ

PN�m
i¼1 nr;mþ1

i

�
PN�mþ1

i¼1 nr;m
iPN�m

i¼1 nr;mþ1
i

:

The natural logarithm of Cr is defined as the sample

entropy SE. It is a real number that depends on three

parameters: the number of points in the sequences, m, the

similarity radius r, and the total number of data points in

the time series N. To test the robustness of the MSE results,

the same analyses were also performed for r = 0.10, 0.15,

0.25, and 0.30. However, while the overall MSE values

showed the expected increase with increasing r, the relative

results for young and older adults did not change. We also

varied the parameter m from 1 to 5 and the relative results

for young and older adults did not change either. We report

the MSE values with r set to 0.20 (with the criterion

distance to be 0.20 times SD) and m set to 2. The number of

data points N for the prolonged standing trials was 36,000.
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This definition of sample entropy was extended by Costa

et al. (2002) to define the multi-scale entropy (MSE) as a

result of successive smoothing of the time series. The

smoothing was done by averaging the data points in given

non-overlapping windows; s is the number of data points

that defines the window, called the time-scale factor. Thus,

the time series becomes more coarse-grained with

increasing s, i.e., decreasing the length of the time series to

N/s. For every smoothing, one value is obtained for the

sample entropy SE. The graph of SE as a function of s is

referred to as the MSE curve, which can be interpreted as a

measure of information content on multiple time scales of

the signal. For 1/f noise MSE is known to saturate with

increasing s to a constant value that is approximately 1.8.

For white noise it shows an exponential decrease starting

from a value of approximately 2.5. For Brownian noise it

also shows an exponential decrease but starts from a value

of approximately 1.7.

The MSE measure is known to be sensitive to data that

have fluctuations with amplitudes that are orders of mag-

nitude higher than the rest of the time series because such

‘‘outliers’’ change the standard deviations of the time series

and consequently, the value of the criterion distance

(r 9 SD). In their study of cardiac rhythm in individuals

with congestive heart failure, Costa et al. (2005) have

observed and studied this effect when statistical outliers

were present. This caveat needs to be kept in mind because

in prolonged standing there are significant postural chan-

ges—fidgets, shifts and drifts—that will produce a similar

effect. It should be noted, however, that these changes are

not outliers, resulting for example from measurement

noise, but rather changes that have important physiological

meaning.

To evaluate the effect of these postural changes on the

MSE results, we calculated the MSE measure not only of

the raw time series but also of the time series that elimi-

nated or normalized for these features. We implemented

these calculations in two different ways, following the

discussion of the sensitivity of the MSE measure to outliers

by Costa et al. (2005). In the first procedure, we did not

normalize the criterion distance by the standard deviations

as initially performed. Rather, we adopted an absolute

criterion distance for all time series, r = 0.2 (which for our

data means a value of 0.2 cm). In the second procedure, the

COP time series were ‘‘corrected for outliers’’ by removing

the three types of postural changes, shifts, fidgets, and

drifts. The shifts and fidgets were identified by previously

developed algorithms and then removed from the entire

time series. The algorithms are based on a moving window

analysis using threshold criteria for amplitude and width of

the patterns (a complete description of these algorithms can

be found in Duarte and Zatsiorsky 1999; Duarte et al.

2000). To eliminate drifts the COP time series were high-

pass filtered using a high-pass Butterworth filter with a

cutoff frequency ten times the lowest possible frequency in

the time series: 10/1,800 = 0.0056 Hz. Finally, the data

with values higher than three standard deviations were

removed to eliminate any possible remaining outlier.

The MSE analyses and the additional normalization

procedures were only performed on the prolonged standing

data, as the trials from quiet standing did not have enough

data points. The time-scale factor s was varied from 1 to 50

data points, equivalent to 50–2,500 ms. The DFA analysis

was applied to both short and prolonged standing trials. For

the short standing data (60 s), the window sizes w ranged

between 1 and 10 s, increasing in increments of 50 ms. For

the prolonged standing data (30 min), the range of window

sizes w was chosen to be between 1 and 10 s and between

10 and 600 s, again in increments of 50 ms. The reason for

conducting the DFA analysis of the long time series with

two time scales, 1–10 s and 10–600 s, was to compare the

DFA results of the shorter time scale with the DFA results

of the short standing data. Further, the two time scales

when applied to the long time series were non-overlapping

and thereby permitted an additional within-subject com-

parison between time scales. For the DFA analysis, it was

not necessary to also analyze the normalized and filtered

COP time series as the DFA exponent is not affected by the

time-series’ standard deviations.

Two surrogate analyses were conducted to test the

properties of the COP data and the statistical difference

with the MSE and DFA results were determined. For a first

surrogate data set, the original time series were randomly

shuffled to create a new set of data with the same mean and

variance as the original ones, but with an independent and

identical distribution. This surrogate analysis specifically

tests the null hypothesis that the process is generated by

uncorrelated noise. For white noise the DFA exponent a
should equal to 0.5 and the MSE curve should show an

exponential decrease. For a second surrogate data set, a

phase-randomized surrogate analysis (Theiler et al. 1992)

was conducted and the statistical difference with the MSE

and DFA results determined. This surrogate analysis spe-

cifically tests the null hypothesis that the process is

generated by a linearly correlated noise with Gaussian

innovations (linear process). To this end, we computed the

fast Fourier transform (FFT) of the data, added a random

number between 0 and 2p to the phase of the FFT data, and

then calculated the inverse FFT to obtain the surrogate

data. This new set of data has the same mean, variance, and

autocorrelation function as the original ones. Rejection of

the null hypothesis for the phase-randomized surrogate

analysis implies that the data exhibits nonlinear correla-

tions. To determine differences in the DFA and MSE

measures, for the surrogate analyses dependent t tests were

used and for the age comparison independent t-tests were
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used, all with a significance level of 0.05. Statistical

comparisons of the MSE results for the adult and elderly

were conducted by comparing the area under each MSE

curve (Costa et al. 2007): MSE area ¼
P50

i¼1

SE(iÞ: Additional

statistical comparisons of the sample entropy values for the

adult and elderly were conducted at three selected s
parameters, s = 1, 10, and 40. To accommodate for these

multiple comparisons, we employed Bonferroni adjust-

ments on the obtained P values.

Results

In Fig. 1, panels a and b show exemplary COP time series of

prolonged standing for the AP and ML directions of one

young adult participant; panel c shows the corresponding

two-dimensional trace on the force platform. Panels d–f

present the corresponding plots for one member of the older

group. The differences in structure and amplitude of fluc-

tuations between the young adult and the older participant

are evident. The large jerks visible in the time series of the

young participant correspond to gross postural changes

leading to clustered structures in the 2D depiction. The older

participant shows a tight cluster of fluctuations in the 2D

plot without any such large changes. This difference in

behavior between young and older individuals is represen-

tative for all participants and is visible in the group averages.

Figure 2 displays the results from the DFA analysis for

all 14 young adults and 14 older participants. The six panels

show the detrended fluctuation parameter F plotted as a

function of window width w in a log–log plot. In each panel,

the data plotted with hollow circles show the F values for a

representative participant from the respective group. The

solid lines represent the linear least-square fits to the F

values of each participant’s trial. The slopes of these lines

are the DFA exponents a obtained for each trial of each of

the 14 participants. Panels a and b show the results for quiet

standing for a range of w from 1 to 10 s; panels c and d show

the data for prolonged postural sway calculated for the same

window sizes as used in the quiet standing; panels e and f

illustrate the results for prolonged standing but calculated

for window sizes between 10 and 600 s. For a better com-

parison of the slopes of the regressions, all lines were

shifted vertically to one common y-intercept, which was

taken from one representative participant. All these results

are for the AP direction; the results for the ML direction

were very similar and are not shown.

For a better evaluation of the results the same DFA

calculations were also applied to simulated Brownian noise

and white noise data. The results are shown by the two

dashed lines in each graph. As can be seen, all of the actual

data lie between Brownian noise for which a = 1.5 and

white noise for which a = 0.5. The fact that all measured

slopes are around 1 gives evidence for the fractal nature of

these data. The inter-individual differences for the small

window sizes are larger for the quiet standing condition

compared to prolonged standing (seen by the spreading of

the lines in Fig. 2a, b compared to c, d). Larger inter-

individual differences are observed again for the larger

window sizes in the prolonged standing condition (seen by

the spreading of the lines in Fig. 2e, f compared to c, d).

Fig. 1 a, b Exemplary COP

time series for the anterior–

posterior (AP) and medio-lateral

(ML) directions, respectively,

for a young adult performing a

prolonged standing for 30 min.

c The corresponding path that

the COP traced on the force

platform. d–f Similar plots for

an older subject
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This difference in the distribution of the results is probably

due to the fact that the calculation of the F value is based

on more data for smaller window sizes than for larger

window sizes in relation to the data length.

Figure 3 summarizes the statistical comparisons of the

a-exponents for young adults and older subjects. Older

participants tended to have slightly lower a-exponents than

the young adults in both short and prolonged standing in both

sway directions. However, only one difference between

young and older individuals in the AP direction for

the prolonged standing task was statistically significant,

t(26) = -2.92, P = 0.007. The difference in the ML

direction shows the same trend but do not reach significance.

An additional comparison of all individual values with the

value 1 indicating (the exponents of the 1/f noise) revealed

no differences: t(13) = -0.86, P = 0.41 for the older group;

t(13) = 1.13, P = 0.28 for the young adult group.

Figure 4 shows the results of the MSE analysis from the

prolonged standing trials for both participant groups. Fig-

ure 4a and b present the means and the standard deviations

of the 14 participants from analyses of the raw COP data,

performed separately for the AP and ML directions. The

black curves represent the young and the gray curves

represent the older adults. In all four plots the curves begin

at similar values for s = 1 and subsequently separate until

they saturate with increasing s. This illustrates that the

calculations for different time-scale factors reveal infor-

mation that is not contained in SE alone (s = 1) and

differences appear only at longer time scales. The results

shown in Fig. 4a, b were obtained with the parameter r set

to 0.20.

Figure 5a shows the mean and standard deviations of the

MSE area across the 14 participants for each age group and

direction. The older group showed a significantly higher

MSE area than the adult group for both AP (t(26) = -2.93,

P = 0.007) and ML (t(26) = -3.85, P = 0.001) directions.

Fig. 2 Detrended fluctuation analysis (DFA) for the adult and older

groups in the AP direction. Thin solid lines represent the linear fits of

the data of the 14 participants of each group; the dashed lines indicate

the linear fits of white and Brown noise for comparison. The slopes

correspond to the DFA exponents. a, b Linear fits of the quiet

standing trials, for window sizes between 1 and 10 s; c, d prolonged

standing trials for lags from 1 to 10 s; e, f linear fits of the prolonged

standing trials for window sizes from 10 to 600 s

Fig. 3 a DFA exponents in the anterior–posterior (AP) direction for

the short (60 s) and prolonged (30 min) standing time series of young

adults (white bars) and older participants (gray bars); b similar results

for the ML direction. Means and SD for each group (N = 14)
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Figure 4c, d show results from the MSE analyses when

the criterion distance was not adjusted. Compared to the

curves in Fig. 4a, b the MSE values for the young and older

groups became very similar. The comparison of these MSE

areas confirmed this impression and rendered no statistical

differences between groups as significant for both

AP (t(26) = 0.35, P = 0.73) and ML (t(26) = -0.04,

P = 0.97) directions. The means and standard deviations of

MSE area across participants for both groups are shown in

Fig. 5b.

In addition, statistical comparisons of the sample entropy

values for the adult and elderly were conducted at three

selected s parameters, 1, 10, and 40, shown by the vertical

dashed lines in Fig. 4a, b. Figure 6a shows the mean and

standard deviations of the sample entropy values for the three

selected s parameters. For all three values of s the elderly

group showed a significantly higher sample MSE values than

the adult group, each t(26) [ 3.06, P \ 0.01. When the

criterion distance was not adjusted, similar as for the results

for the MSE area, the comparison of the MSE values at the

three time-scale factors s also failed to render significant

statistical differences between groups, t(26) \ 0.86, P = 1.

The means and standard deviations of the MSE values in this

case are shown in Fig. 6b.

Applying the second correction procedure, which

removed the three types of postural changes, yielded similar

results: the difference in MSE results disappeared leaving

both groups with the same degree of complexity, MSE area:

t(26) = 1.19, P = 0.24 and ML t(26) = -0.55, P = 0.59;

MSE values at the three s factors: t(26) \ 1.0, P = 1.

However, a caveat is in place: removal of the drifts by high-

pass filtering removes the long-range correlations. This can

Fig. 4 a, b MSE curves (mean

and SD) for postural sway time

series of 14 adult and 14 older

participants in the AP direction

(left column) and ML direction

(right column) for the regular

analysis with r = 0.20; c, d
similar plots for the COP time

series after the r parameter was

not adjusted

Fig. 5 Area under the MSE curve (mean and SD) for postural sway

time series of 14 adult and 14 older participants in the AP and ML

directions for the raw COP time series (a) and for the normalized

COP time series after the similarity radius r was corrected (b)
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be seen in Fig. 7 that shows the same time series as in Fig. 1

after the postural changes were removed. Evidently, the

DFA analysis will be affected by such a procedure and

produce lower values for the exponents. Therefore, these

corrected data were only considered for the MSE analysis.

To further test the null hypothesis of white noise, two

surrogate analyses were conducted on the DFA and MSE

measures. The DFA exponents from the random shuffled

surrogate data in both postural tasks in AP and ML

directions and for both window sizes were between 0.48

and 0.50, indicating white noise. Pairwise t tests confirmed

that the a exponents of the surrogate data were significantly

different from their corresponding unshuffled data (all

comparisons yielded t(26) [ 10, P \ 0.005). The MSE

curves from the surrogate data showed the same expo-

nential decrease for both groups in the two sway directions,

as expected for white noise. The DFA exponents from the

phase-randomized surrogate data in both postural tasks in

AP and ML directions and for both groups and window

sizes were not different from their corresponding original

data (all comparisons yielded t(26) \ 1, P [ 0.05). The

MSE curves from the surrogate data showed a similar

pattern but with a significantly greater area under the curve

(higher complexity) for both groups and directions (all

comparisons yielded t(26) \ -3.2, P \ 0.004), suggesting

that the COP data of prolonged standing tasks are produced

by a nonlinear process.

Discussion

The present study investigated the effects of aging on the

complexity of postural sway dynamics during prolonged

standing to test the hypothesis that aging is associated with

a decrease in complexity. This hypothesis was extended

from results in other physiological measures, such as

cardiac signals where older people displayed lower com-

plexity (Lipsitz 2002). Two nonlinear analytical tools were

applied to the time series of the center of pressure during

standing: the detrended fluctuation analysis (DFA) which

quantifies the long-range correlations or fractal dimension

of the data (which is also related to the complexity of the

data) and the multi-scale entropy analysis (MSE) which is

an information-theoretic measure that quantifies the

entropy or complexity of the data. To be able to capture the

structure on multiple time scales, importance was given to

recording relatively long time series of half-an-hour in

addition to the typical short ones of 1 min. This prolonged

standing task mimics realistic situations where people

stand comfortably with few constraints for a relatively long

period.

Fractality

Differences between the two postural tasks were present

in the DFA results. First of all, the a-exponents indicate a

fractal-like nature of the sway dynamics for both tasks

and groups—with older participants showing slightly

smaller exponents than the young adults, especially for

the prolonged standing. The values of the a-exponents for

the adult group are in agreement with earlier results by

Fig. 6 Sample entropy values (mean and SD) at the time-scale factor

1, 10, and 40 for postural sway time series of 14 adult and 14 older

participants in the AP and ML directions for the raw COP time series

(a) and for the normalized COP time series after the similarity radius r
was no longer adjusted (b)

Fig. 7 The same COP time series for the AP and ML directions for a

young adult (top) and an older subject (bottom) as shown in Fig. 1,

but after the postural changes removal (see ‘‘Methods’’)
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Duarte and Zatsiorsky (2000, 2001). This difference

between age groups, however, is only significant for the

COP data at the anterior–posterior direction during the

prolonged standing task for the longer time scales, i.e.,

window sizes between 10 and 600 s (older 0.94 ± 0.19;

young adults 1.14 ± 0.18). These values show that the

two groups depart from 1/f noise in different directions:

the older subjects towards white noise (a = 0.5) which is

a completely unpredictable process and the young adults

towards Brownian noise (a = 1.5) which is a ‘smoother’

process with only local correlations. However, a com-

parison of the group values revealed that the fractal

dimensions of all groups were not different from the

exponent of the 1/f noise.

Thurner et al. (2002) and Lipsitz (2002) conducted

power spectral analyses in short quiet standing (20 and

30 s, respectively). Both studies reported higher power

spectral exponents b in older persons compared to young

adults and interpreted this result as evidence for a decrease

in complexity in aging postural control. Note that b is the

slope of the linear regression to the power spectrum on a

log–log scale and is analytically related to the DFA

exponent a as: b = 2a - 1 (Havlin et al. 1988). The b
values found by these authors at the short time scale were

above the value for Brownian noise (b = 2 or a = 1.5).

Time series with such high exponents are more regular and

consequently referred to as less complex. These results,

however, reflect mostly the structure in the COP data at

shorter time scales (below 1 s), where it is known that the

COP data obeys a power law with a different (higher)

exponent than in the long time scales (Collins and De Luca

1993; Duarte and Zatsiorsky 2001). It is not clear, however,

why there would be an age-related difference only at a

short time scale and not at a long time scale.

The smaller a-exponents observed for the older group

at longer time scales during prolonged standing suggest

more saturation in the power law relation, i.e., the

unconstrained nature of the task was less explored. This

interpretation is consistent with the decrease in the

amplitudes of the postural changes in the older subjects as

already reported by Freitas et al. (2005). As such, the

smaller a-exponents may be indicative of a malfunction of

the postural control system to generate adequate responses

to perturbations on longer time scales. Conversely, pos-

tural changes may be interpreted as a mechanism that

brings about the power-law relation in the body sway

across different time scales.

Entropy of sway

The MSE results also rendered different effects for older

and healthy young adults: the first analysis of the raw data

indicated that older individuals showed a higher degree

of complexity, especially when the data became more

coarse-grained by larger time scale factors. This result runs

counter to the hypothesized lower degree of complexity in

older people (Lipsitz and Goldberger 1992; Goldberger

et al. 2002b; Lipsitz 2004). Does this contradictory result

have any meaning or is it an artifact of the algorithm?

Returning to the details of the MSE algorithm, it was

emphasized that the criterion distance for similarity of two

sequences is partly determined by the standard deviations

of the time series. Hence, the more variable the time series,

the larger is the criterion distance and the more easily two

sequences are counted as similar. Consequently, the SE and

MSE values tend to be lower. In the present data, the

standard deviations of the mean COP time series for the

young adult group were about 85% higher than for the

older group in the AP direction, and 125% higher in the

ML direction. While this choice of the criterion distance is

deliberate to achieve comparability of signals with differ-

ent magnitudes in their fluctuations, it also normalizes the

data for non-random meaningful differences, such as the

postural changes in prolonged standing in older and young

adults. Hence, this parameterization of the MSE analysis

runs danger to ‘‘normalize out’’ the structure that we are

interested in.

Given that the results obtained for the raw COP time

series were consistent with this potential confound—

young adults with larger postural changes showed lower

MSE values due to the larger criterion distance—we

conducted one more test where we eliminated this

normalization via the similarity radius r: the criterion

distance was identical for all data. The results of MSE

values then showed that the previously observed differ-

ence in the MSE measure between the adult and older

groups disappeared. However, the degree of complexity in

adults was now only similar to older people, not higher;

hence, the result was still not consistent with the

hypothesis that older people show decreased complexity.

This result was confirmed once more by a third test that

removed postural changes. This third test was partly

motivated by the study of the sensitivity of the MSE

measure to outliers by Costa et al. (2005). Yet, it should

be kept in mind that, different from Costa’s study where

the data contained real outliers, the large and irregular

postural changes are an inherent part of the observed data

with physiological meaning.

Recently, Costa et al. (2007) applied the MSE mea-

surement to understand the effect of a stochastic-resonance-

based therapy (subthreshold mechanical vibrations applied

to the feet) on postural sway during quiet standing of young

and older adults. They observed an increase in complexity

after the therapy, a decrease in complexity in older fallers,

but no difference in complexity between healthy young and

older adults. Although they studied a different time scale
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(shorter than 1 s), the observed absence of age-related

effects on the complexity of postural sway is consistent with

our findings. In another study on postural sway during short

quiet standing of older individuals with and without stroke,

using sample entropy as a measure of complexity Roerdink

et al. (2006) found that stroke patients showed higher

complexity in the medio-lateral direction compared to

healthy controls but lower values in the anterior-posterior

direction. All these somewhat contradictory results of

power spectral, DFA, SE, and MSE analyses suggest that

the effects of aging and disease on the complexity of pos-

tural sway require further investigation.

One explanation for our seemingly conflicting results is

that natural prolonged standing is a relatively complex

whole-body task where postural movements such as shift-

ing weight from one foot to another are sensitively

intertwined with the overall task of maintaining equilib-

rium. Given that humans seem to be unable to remain

completely motionless for a prolonged period postural

changes seems to be the solutions for this task ‘found’ by

the nervous system (Bridger 1991; Whistance et al. 1995;

Duarte and Zatsiorsky 1999). Therefore, the postural con-

trol system continuously deals with weight transfer and

reconfiguration of the body that relocates the center of

pressure and yet balances the body without falling. In this

light, prolonged standing seems to be more challenging

than short quiet standing. Older individuals seem to

respond less to these task demands than young adults, as

evidenced by fewer postural changes of large amplitude

during prolonged standing (Freitas et al. 2005). The DFA

measures are consistent with this observation such that

older individuals exhibit lower DFA exponents suggesting

that the unconstrained nature of the task was less explored.

The absence of the hypothesized decrease in complexity in

the MSE measure may therefore be ascribed to an adap-

tation process; older people reduced their postural sway as

a sign of their inability to deal with the complex challenges

of maintenance of equilibrium. The effect of this reduced

mobility is that the structure at longer time scales of the

signal was less pronounced.

Another explanation for our results may be found in a

proposition by Vaillancourt et al. (2002, 2004). Contrary to

the hypothesis of a general decrease in complexity with

aging, Vaillancourt et al. (2002, 2004) argue that com-

plexity may both increase and decrease with aging,

depending on the task. The researchers showed that for a

task where subjects maintained a constant level of iso-

metric force, aided by visual feedback, complexity as

measured by MSE indeed decreased with aging (Vaillan-

court et al. 2004). In contrast, when the same subject

tracked a sinusoidal wave by varying isometric force the

complexity measure increased with aging. Vaillancourt

et al.’s hypothesis is that aging physiological systems are

specifically deficient in adapting to varying environmental

demands. More specifically, their bidirectional complexity

hypothesis postulates that tasks with a stable equilibrium

point show a decrease in complexity with age, in contrast

to tasks with limit cycle stability that show an increase.

Hence, the complexity of selected measures depends on the

nature of the task and the dynamics of the specific physi-

ological system.

From this viewpoint, the postural task may be inter-

preted as the tracking of a moving equilibrium point, an

interpretation that has in fact been proposed as a basic

underlying mechanism of postural control (Zatsiorsky and

Duarte 1999; Dijkstra 2000; Cabrera and Milton 2004).

While probably relevant for all postural tasks, this inter-

pretation was particularly motivated by the sway

trajectories in prolonged standing, which intermittently

tend to fluctuate around an equilibrium point. However, it

needs to be kept in mind that the tracking of an externally

presented pattern as in Vaillancourt’s task is not the same

as the tracking of a self-generated equilibrium point. In

fact, the presence of such an equilibrium-point is the

product of a complex interactive process.

One last aspect need to be kept in mind for the under-

standing of our results. The older participants in our study

were active individuals who have regularly attended fitness

classes for 1 year. None of them had a history of falls

indicating balance problems. This activity may have con-

tributed to a slowing of the general aging process such that

their data show less symptoms of age than those of their

more sedentary age-peers. Therefore, it may also be

interesting to examine older individuals who do not follow

a regular exercise regime or also those who are more frail

in comparison to the average individual.

In conclusion, the results of our analysis of complexity

in postural sway of older people are inconsistent with the

generally acknowledged hypothesis that complexity in the

human physiological system decreases with aging (Lipsitz

and Goldberger 1992; Goldberger et al. 2002b; Lipsitz

2004). Given that older people show significantly

decreased amplitudes in postural sway, we interpreted

this finding as the consequences of adaptation processes

suggesting a failure of the postural control system to

generate adequate responses on longer time scales. Such

adaptation seems to become visible only in the prolonged

standing task as no such indication was seen in short

quiet standing.
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Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP/

Brazil awarded to Marcos Duarte (04/10917-0). Dagmar Sternad was

supported by grants from the National Science Foundation (BCS-

0450218) and the National Institutes of Health (RO1-HD045639).

Exp Brain Res (2008) 191:265–276 275

123



References

Bridger RS (1991) Some fundamental aspects of posture related to

ergonomics. Int J Ind Ergon 8:3–15

Cabrera JL, Milton JG (2004) Human stick balancing: tuning Levy

flights to improve balance control. Chaos 14:691–698

Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of

posture: a random-walk analysis of center-of-pressure trajecto-

ries. Exp Brain Res 95:308–318

Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy

analysis of complex physiologic time series. Phys Rev Lett

89:068102

Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy

analysis of biological signals. Phys Rev E Stat Nonlin Soft

Matter Phys 71:021906

Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL,

Peng CK (2007) Noise and poise: enhancement of postural

complexity in the elderly with a stochastic-resonance-based

therapy. Europhys Lett 77:68008

Dijkstra TMH (2000) A gentle introduction to the dynamic set-point

model of human postural control during perturbed stance. Hum

Mov Sci 19:567–595

Duarte M, Zatsiorsky VM (1999) Patterns of center of pressure

migration during prolonged unconstrained standing. Motor

Control 3:12–27

Duarte M, Zatsiorsky VM (2000) On the fractal properties of natural

human standing. Neurosci Lett 283:173–176

Duarte M, Zatsiorsky VM (2001) Long-range correlations in human

standing. Phys Lett A 283:124–128

Duarte M, Harvey W, Zatsiorsky VM (2000) Stabilographic analysis

of unconstrained standing. Ergonomics 43:1824–1839

Feder J (1988) Fractals. Plenum Press, New York

Freitas SM, Wieczorek SA, Marchetti PH, Duarte M (2005) Age-

related changes in human postural control of prolonged standing.

Gait Posture 22:322–330

Gell-Mann M (1995) What is complexity? Complexity 1:16–19

Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK,

Stanley HE (2002a) Fractal dynamics in physiology: alterations

with disease and aging. Proc Natl Acad Sci USA 99(Suppl

1):2466–2472

Goldberger AL, Peng CK, Lipsitz LA (2002b) What is physiologic

complexity and how does it change with aging and disease?

Neurobiol Aging 23:23–26

Havlin S, Blumberg Selinger R, Schwartz M, Stanley HE, Bunde A

(1988) Random multiplicative processes and transport in

structures with correlated spatial disorder. Phys Rev Lett

61:1438–1441

Horak FB, Shupert CL, Mirka A (1989) Components of postural

dyscontrol in the elderly: a review. Neurobiol Aging 10:727–738

Lipsitz LA (2002) Dynamics of stability: the physiologic basis of

functional health and frailty. J Gerontol A Biol Sci Med Sci

57:B115–B125

Lipsitz LA (2004) Physiological complexity, aging, and the path to

frailty. Sci Aging Knowl Environ 2004:pe16

Lipsitz LA, Goldberger AL (1992) Loss of ‘complexity’ and aging.

Potential applications of fractals and chaos theory to senescence.

JAMA 267:1806–1809

Maurer C, Peterka RJ (2005) A new interpretation of spontaneous

sway measures based on a simple model of human postural

control. J Neurophysiol 93:189–200

Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantifica-

tion of scaling exponents and crossover phenomena in

nonstationary heartbeat time series. Chaos 5:82–87

Pincus SM (1991) Approximate entropy as a measure of system

complexity. Proc Natl Acad Sci USA 88:2297–2301

Richman JS, Moorman JR (2000) Physiological time-series analysis

using approximate entropy and sample entropy. Am J Physiol

Heart Circ Physiol 278:H2039–H2049

Roerdink M, De Haart M, Daffertshofer A, Donker SF, Geurts AC,

Beek PJ (2006) Dynamical structure of center-of-pressure

trajectories in patients recovering from stroke. Exp Brain Res

174:256–269

Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer DJ (1992)

Testing for nonlinearity in time series: the method of surrogate

data. Phys D Nonlinear Phenom 58:77–94

Thurner S, Mittermaier C, Ehrenberger K (2002) Change of

complexity patterns in human posture during aging. Audiol

Neurootol 7:240–248

Vaillancourt DE, Newell KM (2002) Changing complexity in human

behavior and physiology through aging and disease. Neurobiol

Aging 23:1–11

Vaillancourt DE, Sosnoff JJ, Newell KM (2004) Age-related changes

in complexity depend on task dynamics. J Appl Physiol 97:454–

455

Whistance RS, Adams LP, van Geems BA, Bridger RS (1995)

Postural adaptations to workbench modifications in standing

workers. Ergonomics 38:2485–2503

Zatsiorsky VM, Duarte M (1999) Instant equilibrium point and its

migration in standing tasks: rambling and trembling components

of the stabilogram. Motor Control 3:28–38

276 Exp Brain Res (2008) 191:265–276

123


	Complexity of human postural control in young and older adults during prolonged standing
	Abstract
	Introduction
	Methods
	Participants
	Design and procedure
	Data acquisition and analysis
	Detrended fluctuation analysis
	Multi-scale entropy

	Results
	Discussion
	Fractality
	Entropy of sway

	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


