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Abstract

Falls and injuries while walking are recurrent problems for people who suffer from foot drop.
When this condition is caused by a lesion in the central nervous system, it is possible to restore
part of the gait function by applying functional electrical stimulation during specific gait events.
This study had the following goals: to create an open dataset of inertial, magnetic, foot-ground
contact, and electromyographic signals from wearable sensors during walking at different speeds;
and to develop a multiple regression method to estimate gait events based on the data from this
open dataset. Employing wearable sensors, we acquired data from 22 healthy adults and one with
foot drop walking at self-selected comfortable, fast, and slow speeds, and standing still. All data
are publicly available at Figshare (DOI: 10.6084/m9.figshare.7778255). The novel algorithm
we proposed is based on linear multiple regression. The open dataset contains 9,661 gait strides
for the healthy subjects and 496 for the subject with the foot drop. The proposed algorithm for
estimating the toe-off gait event showed a median accuracy across the healthy subjects and gait
speeds of 88.8%, and an accuracy of 97.3% for the affected limb of the subject with foot drop.
The open dataset we created will enable researchers to test algorithms for gait-event estimation
against a common reference. The algorithm presents comparable performance to other existing
algorithms concerning healthy subjects and a promissing result based on one subject with foot
drop. It is potentially adjustable for real-time application.

Keywords: Gait dataset. Gait recognition. Open access. Accelerometers. Gyroscopes.
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Resumo

Quedas e lesões durante a caminhada são problemas recorrentes para pessoas que sofrem de pé
equino. Quando esta condição é causada por uma lesão no sistema nervoso central, é possível
restaurar parte da função da marcha aplicando estimulação elétrica funcional durante eventos
específicos da marcha. Este estudo teve os seguintes objetivos: criar uma base de dados aberta
de dados inerciais, magnéticos, eletromiográficos e de contato dos pés durante a caminhada em
diferentes velocidades; e desenvolver um método de regressão múltipla para estimar os eventos
de marcha com base nos dados deste conjunto de dados abertos. Empregando sensores vestíveis,
adquirimos dados de 22 adultos saudáveis e um com pé equino caminhando nas velocidades
confortável, rápida e lenta, e parados. Todos os dados estão disponíveis publicamente no Figshare
(DOI: 10.6084/m9.figshare.7778255). O novo algoritmo que propusemos é baseado em regressão
linear múltipla. O conjunto de dados aberto contém 9.661 passadas para os sujeitos saudáveis
e 496 para o sujeito com pé equino. O algoritmo proposto para estimar o evento toe-off da
marcha mostrou uma acurácia mediana de 88,8% entre os indivíduos saudáveis e as diferentes
velocidades, e uma acurácia de 97,3% para o membro afetado do sujeito com pé equino. O
conjunto de dados aberto que criamos permitirá que os pesquisadores testem algoritmos para
estimativa de evento de marcha em comparação a uma referência comum. O algoritmo apresenta
desempenho comparável a outros algoritmos existentes em relação a indivíduos saudáveis e
um resultado promissor baseado em um sujeito com pé equino. É potencialmente ajustável a
aplicações em tempo-real.

Palavras-chave: Conjunto de dados de marcha. Reconhecimento de marcha. Acesso aberto.
Acelerômetros. Giroscópios.
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Preamble (in Portuguese)

Este texto de qualificação é uma versão expandida de um manuscrito submetido para
publicação em uma revista científica na área de Engenharia Biomédica. A maior parte da forma
e conteúdo do presente texto reflete esta escolha.



12

1 Introduction

Falls and injuries while walking are recurrent problems for people who suffer from foot
drop. This condition refers to weakness of the ankle dorsiflexor muscles, of which the primary
one is the tibialis anterior (TA) [1,2], impairing, for example, the ability to raise the foot and toes
to prevent them from hitting the ground during the swing phase of walking. Foot drop can be
caused by lesions of specific peripheral nerves or central nervous system lesions such as stroke,
cerebral palsy, and multiple sclerosis [1–3]. When the lesion affects the central nervous system,
the electrical excitability of the associated peripheral nerves is likely preserved [3], so functional
electrical stimulation (FES) may be used to restore adequate movement patterns among people
who suffer from foot drop. A person with foot drop would wear a portable FES device that would
electrically stimulate the tibialis anterior muscle just before the expected swing phase of the
affected inferior limb, evoking a flexion of the ankle and foot during walking. In this scenario, it
is fundamental to correctly estimate the moment at which to trigger the stimulus to the muscle
(in this case, the instant when the foot should leave the ground under normal conditions).

1.1 Gait

Gait is the term used to describe the pattern of movement with alternating load across
the limbs during locomotion over a solid substrate, and for humans gait is typically bipedal and
resumes to walking and running [4]. The gross movement patterns of a healthy person’s gait
are cyclic, so the sequence of events that describes the gait is repeated after a certain period [4].
The movement patterns of a walking gait can be described in more detail when divided into
events and phases, as illustrated in Figure 1. A complete normal gait cycle (or stride) begins and
ends with the same event, usually the initial ground contact of the leading limb, a heel strike

(HS) [5]. Then the leading limb takes over the body weight by placing the whole foot on the
ground, in a sub-phase called loading response. The moment when the toes touch the ground
is the toe strike (TS). Next, in the mid-stance sub-phase, the body is moved forward while the
opposite limb is in the swing phase. The heel loses ground contact, the heel off (HO) event,
and the body continues to be propelled forward until the pre-swing sub-phase starts. Still due
to this propulsion, the toe off (TO) event occurs when the toes leave the ground, starting the
swing phase. During the swing phase the swinging limb is accelerated forward, then it passes
the opposite limb (mid-swing sub-phase) and is decelerated until the next HS event, which will
finish the swing phase. The phase from the HS event until the TO event of the same lower limb
is the support phase for that lower limb. A stride starting and ending with the left heel strike
(LHS) consists of one right step followed by one left step; the inverse occurs for a gait stride
starting and ending with the right heel strike (RHS).
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Figure 1 – Gait events, phases, and sub-phases of a typical walking gait cycle. Letters L or R before the
event names indicate the lower limb side, left (red) or right (blue), respectively. The horizontal
stripes illustrate the stance phase of each lower limb. HS: heel strike; HO: heel off; TO: toe
off; TS: toe strike.

1.2 Methods to measure gait

Temporal events that identify different phases in a person’s gait can be consistently
defined by the interaction forces between the left and right feet and the ground (see section 1.1).
Accordingly, force sensors embedded at the ground (e.g., force platforms) and wearable sensors
(e.g., portable foot switches at the sole) have been used as the gold-standard method to detect gait
events. A method to estimate gait events, convenient for its portability, low cost, and practicality,
has attracted increasing interest. The method is based on inertial and magnetic wearable sensors
integrated as a single inertial measurement (IM) unit [6, 7]. A typical portable IM unit that can
be applied in gait analysis consists of a microelectromechanical system with gyroscope (angular
position rate sensor), an accelerometer (acceleration sensor) and a magnetometer (orientation
sensor) with one, two, or three axes at each sensor [6, 8, 9].

1.3 What has already been done

Several algorithms based on some or all signals of an IM unit, or even of multiple
IM units, have been proposed in the literature to estimate specific events during normal and
impaired gait for potential real-time use in daily living situations. We performed a review of
the studies about different methods for gait event identification, where we included the studies
which matched one or more of the following search keys in Medline and Google Scholar: gait
detection, gait identification, gait events, inertial sensors and inertial measurement unit. Table
1 summarizes the main characteristics of the selected recent studies on this topic since 2010
(see [6] for a review on older articles). Despite the intense development in this field, there is no
accepted, robust algorithm for gait-event estimation based on IM units for real-time applications.
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A limitation to the development of robust methods for gait-event estimation is that there
is no public dataset consisting of raw signals to enable gait analysis (e.g., force data from
foot-ground interactions and raw IM-unit signals) that researchers could use to test algorithms.
We are aware of two open datasets with some of these characteristics: the MAREA gait database
[10] contains data from foot-switch sensors (foot–ground contact data) and from accelerometers,
but not gyroscope or magnetic sensor data. The OSHWSP gait dataset [11] contains data
from triaxial accelerometers and gyroscopes, but not foot-ground contact data. There is thus a
demand for an open dataset of gait-event–related signals. Such a dataset should contain data
on different walking speeds, because various speeds are present in daily life activities. Data on
the timing of tibialis anterior muscle activation in healthy subjects during walking could also
be useful for gait-event estimation and the development of an FES device for people with foot
drop. This timing can be measured via surface electromyography. A robust public gait dataset
would make it possible to test algorithms against a common dataset, improving the replicability
and transparency of such studies [12, 13] and attracting research groups around the world to the
problem of gait-event estimation, which has otherwise been inaccessible owing to lack of data.

1.4 Goals

With the proposal to develop a reliable method for gait event identification and that could
be used in real-time with wearable sensors, the goals of this study were twofold: to create an
open dataset of inertial, foot-ground contact, and electromyographic data during walking at
different speeds; and to develop a new method based on multiple regression to estimate gait
events using wearable inertial sensors with this open dataset.
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Table 1 – Main characteristics of studies since 2010 about different algorithms for gait-event estimation using wearable inertial sensors. a: acceleration; 𝜔: angular
rate; B: magnetic field. 1, 2, 3: number of sensor’s dimensions; HS: heel strike; TS: toe strike; HO: heel off; TO: toe off; c: comfortable; f: fast; s: slow; ?:
not reported. For a review on older studies, see [6].

Ref. Sensor Number of subjects Foot drop Detected gait event Algorithm Real-time Speeds

Healthy Impaired HS TS HO TO

[14] a3 6 - - X - - X Symbolization ? c s
[15] 𝜔1 7 - - - - - X Rule-based - c
[16] a3 𝜔3 - 1 X - - - X Rule-based Adjustable c
[17] a3 6 - - - - X - Peak detection X c f s
[18] 𝜔1 6 - - - - X X Hidden Markov models - c f s
[19] 𝜔1 10 10 - X - X - Hidden Markov models Adjustable c f
[20] a3 𝜔3 10 32 - X X X X Rule-based Adjustable c
[21] a3 𝜔3 B3 10 - - - - - X Decision tree Adjustable c f
[22] 𝜔1 9 - - - - - X Hidden Markov models - c f s
[23] 𝜔1 7 - - - - - X Rule-based - c
[24] 𝜔1 10 - - X - X - Hidden Markov models Adjustable c
[25] a3 10 10 - - - - X Rule-based Adjustable c
[7] a3 𝜔3 B3 10 30 - X - - X Rule-based - c f
[26] a3 𝜔3 5 - - X - - X Rule-based - c f s
[27] a3 𝜔3 B3 7 1 - X X X X Rule-based X ?
[28] 𝜔3 16 - - X - - X Rule-based X c
[29] a3 7 - - X X X X Rule-based - c
[30] 𝜔1 10 10 X X X X X Hidden Markov models - c s
[31] a3 𝜔3 14 5 X - - - X Rule-based X c f s
[32] a3 𝜔3 B3 10 - - X - - X Rule-based - c
[33] a3 𝜔3 10 32 - X - - X Hidden Markov models/SVM - c f
[10] a3 20 - - X - - X Time-frequency analysis - c f
[34] a3 𝜔3 B3 2 - X X - - X Cycle-extremum/Threshold updating X ?
[35] a3 20 - - X - - X Rule-based - c f
[36] a3 11 - - X - - X Rule-based - c f
[8] a3 𝜔3 B3 11 15 - X - - X Peak detection - c
[37] a3 𝜔3B3 57 - - X - - X Rule-based X c
This work a3 𝜔3 B3 22 1 X X X X X Rule-based Adjustable c f s
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2 Methods

2.1 Subjects

A convenience sample recruited from students and employees at our University composed
by 22 healthy subjects (10 males and 12 females) and one female subject with a foot drop gait
abnormality voluntarily participated in this study. The group of healthy subjects averaged (±1
standard deviation) 28.1 ± 7.4 years of age, 71.1 ± 12.0 kg of body mass, 169.6 ± 10.5 cm of
height, and 24.7 ± 2.8 kg/m2 of body-mass index. The subject with foot drop was 25.2 years of
age and had 50.0 kg of body mass, 161.0 cm of height, and 19.29 kg/m2 of body-mass index. The
subject’s foot drop abnormality was caused by congenital cerebral palsy. Data for each subject
are presented in the open dataset (see section 3.1 on how to access it). This study was approved
by the local ethics committee of the Federal University of ABC (CAAE: 53063315.7.0000.5594),
and all subjects signed a consent form prior to data collection.

2.2 Data acquisition

To measure the inertial variables and electrical activity of the tibialis anterior of both
legs and the contact of the heel and toe of both feet with the ground, we employed an integrated
solution composed of six wireless wearable units and one portable data logger (Trigno EMG
System, Trigno Personal Monitor, Delsys Inc., Natick, USA), as shown in Figure 2. The first unit
(Trigno IM with 10 channels, Delsys Inc.), referred to here as an IM+EMG unit, had a triaxial
accelerometer (with a sampling period of 6.75 ms/sample per channel), a triaxial gyroscope
(6.75 ms/sample per channel), a triaxial magnetometer (13.5 ms/sample per channel), and an
electromyographic (EMG) channel (900 𝜇s/sample per channel). This IM+EMG unit was fixed
to the shank, over the tibialis anterior muscle, after skin preparation and sensor placement were
performed according to the SENIAM recommendations [38]. A second IM+EMG unit was
fixed to the forward flat part of the tibia bone, aligned with its long axis at the same height
of the first IM+EMG unit. The third unit (Trigno 4-Channel FSR Adapter, Delsys Inc.) was
connected with two force-sensitive resistor (FSR) sensors to measure the heel and toe contacts
with the ground, with a sampling period of 6.75 ms/sample per channel. Each FSR sensor (a
1.5-cm diameter circular pad) was fixed underneath the toe and heel with double-sided adhesive
tape. The remaining three wearable units were fixed to the other leg and foot in a similar
configuration. Two IM+EMG units were attached on each leg for a potential future study on
signal reproducibility (these data are also available in the open dataset). The exact axes of
orientation of the IM+EMG units depended on the subject’s leg shape and how he or she walked;
in a standing position with the feet parallel to each other, the Y axis was approximately vertical
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and the positive direction pointed downward, the Z axis was approximately horizontal and the
positive direction pointed forward, and the X axis direction can be found by the right-hand rule
(see Figure 2). The data logger was fixed with a belt to the subject’s waist. A software code for
the data logger managed the data acquisition, and, after the session, the data were uploaded to a
computer in a single file for each trial via the data logger’s software (EMGWorks, version 4.3,
Delsys Inc.). The data from different channels were acquired at different rates and stored in the
file with corresponding timestamps.

Figure 2 – (A) Placement of the wearable units on the subjects’ legs. ‘taR’ and ‘taL’ are the IM+EMG
units over the right and left tibialis anterior muscles, ‘tbR’ and ‘tbL’ are the IM+EMG units
over the tibia bones, and the other two units are the FSR adapters. The coordinate directions X,
Y, and Z of the IM+EMG units are represented using the RGB (red, green, blue) color code,
respectively. (B) Placement of FSR sensors on the heel and toe of the right foot.

2.3 Task

After the sensors were attached to the subject and the task was explained, the subject
walked barefoot six times at each of three self-paced speeds (comfortable, slow, and fast) on a
40-m long and 2-m wide walkway, without curves, with a flat and rigid surface (trials 1, 3, and
5 were in one direction, and trials 2, 4, and 6 were in the opposite direction). The order of the
speeds was randomized among subjects. Each trial lasted from 30 s to 60 s. In addition, one trial
was acquired with the subject standing upright and as still as possible for 10 s, for a potential
calibration of the sensors. Data collection for each subject was performed in a single session,
which lasted 40 min on average.

2.4 Preprocessing

All subsequent steps, including file reading and writing, data processing, analysis, and
visualization, were implemented in the Python language using the SciPy library [39]. Figure 3
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shows the flowchart for signals preprocessing. There were a few instances of missing data
for short periods (less than 100 ms) during the data collection, probably related to wireless
transmission, and these missing data appear as zeros in the files. Missing values were identified
and the data were reconstructed by linear interpolation. After this reconstruction, the data were
filtered with different frequency cutoffs based on the original sampling and data characteristics:
accelerometer and gyroscope data were low-pass filtered with a 60-Hz cutoff frequency, data
from the magnetometer were low-pass filtered with a 30-Hz cutoff frequency, and EMG data were
band-pass filtered between 20 and 450 Hz. These four signals were filtered using a fourth-order
zero-phase Butterworth filter. Due to its impulse-response characteristic, the data from the FSR
sensors were low-pass filtered with a second-order zero-phase critically damped filter with a
30-Hz cutoff frequency. Subsequently, all data were resampled to a common frequency of 1,000
Hz using a polyphase algorithm [40] (function ‘resample_poly’ from the SciPy library). The
amplitude of the FSR data was normalized to the interval 0–1 for each trial. Finally, all data for
each trial were saved in an ASCII (text) file and are available in the open dataset. An example of
the data from the open dataset is shown in Figure 4.
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Figure 3 – Flowchart of signals preprocessing. The files written at the last step are available in the open
dataset (see section 3.1 on how to access it).
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Figure 4 – Exemplary data of part of one trial for the measured signals as available in the open dataset
(with minimal processing). FSR: heel and toe contact forces; EMG TA: tibialis anterior
electromyographic activity; Accel.: acceleration; Ang. Vel.: angular velocity; Mag. Field:
magnetic field. Data are from subject ‘s03’, trial 1, comfortable speed, left side.
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2.5 Detection of gait events

Data from the FSR sensors under the heel and toe of the right and left feet were employed
to identify the following gait events (see section 1.1): right and left HS, HO, TS, and TO.
However, the FSR data often presented fluctuations at the baseline, so before the event detection,
this fluctuation was subtracted from the original data, yielding moving-minimum filtered data
(using the function ‘move_min’ of the bottleneck Python library with a window size of 500
points, 0.5 s, in a dual-pass forward and backward filtering to not introduce any phase lag). To
detect gait events from the FSR data, we employed a Python function ‘detect_onset.py’ (available
with the dataset), which performs onset detection based on an amplitude-threshold method with a
parameter specifying a minimum number of samples above threshold to detect as onset, and other
parameters to tune the detection. (After a few trials with visual inspection of the function output,
the following parameters were chosen: threshold = 2, n_above = 1, n_below = 2, threshold2 = 3,

n_above2 = 1.) The gait events are stored in a separate file as indices corresponding to the rows
in the sensor data files for a given trial, and they are also made available in the open dataset.

2.6 Data visualization

To visualize patterns in the measured signals, we computed average data across subjects.
First, an estimation of the EMG amplitude was calculated using a moving RMS filter with
a window of 100 points (0.1 s). The other signals were low-pass filtered with a fourth-order
zero-phase Butterworth filter and a 10-Hz cutoff frequency. Second, for each trial, we segmented
the data in cycles or strides (see section 1.1). The data of each stride were normalized in time
from 0% to 100% in steps of 1% and averaged across trials to obtain the mean gait cycle for the
given subject/condition. The mean and standard deviation of the gait cycle across subjects were
calculated, repeating the same process with the data of all subjects.

2.7 Algorithm for gait-event estimation

To reiterate, we want to estimate temporal gait events from wearable inertial sensor
signals, aiming at a potential real-time, day-to-day application. Using system identification
[41, 42], we will approach the underlying phenomenon as a system where inertial signals are
inputs and a gait event is the output. We will exploit the possibility of using one or more
inertial signals to predict a gait event by mathematically representing the system as a parametric
empirical model where both its structure (inputs and their connections to the output) as well its
parameters are unknown. In addition, as an initial approach to the problem, we will model the
system as linear, static, discrete in time, and time-invariant; this will make possible the use of
standard and robust statistical methods that are straightforward for embedding into a wearable
device. The model calibration, the estimation of its structure and parameters, and initial model
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validation are performed in two steps. First, we select features based on the inertial signals and
build all possible combinations between inputs and output. Each combination is a candidate
for the model structure. The parameters of each combination (the coefficients) are found by
multiple linear regression between the features and a mathematical representation of the true gait
event (measured with the FSR sensors) using a set of experimental data. Second, of all these
linear regression equations, the one that best predicts the gait event is found by testing all these
equations with a new set of experimental data with known gait events.

Considering the potential application of this method to the foot drop condition, we will
limit the algorithm implementation and test only the estimation of the TO gait event, but this
algorithm could be applied to estimation of other gait events (for the flowchart, see Figure 5).

The following features were selected from the data (after the preprocessing described in
section 2.4): linear accelerations from the triaxial accelerometer, the magnitude of total linear
acceleration, angular velocities from the triaxial gyroscope, and the magnitude of total angular
velocity.The magnitudes of total linear acceleration and total angular velocity were computed as
the Euclidean norms from their corresponding components (Equation 2.1):

𝑎𝑚𝑎𝑔 =
√︁

𝑎2𝑋 + 𝑎2𝑌 + 𝑎2𝑍

𝜔𝑚𝑎𝑔 =
√︁

𝜔2
𝑋 + 𝜔2

𝑌 + 𝜔2
𝑍

(2.1)

where 𝑎𝑚𝑎𝑔 and 𝜔𝑚𝑎𝑔 are the magnitudes of total acceleration and total angular velocity, respec-
tively, and 𝑎𝑋 , 𝑎𝑌 , 𝑎𝑍 , 𝜔𝑋 , 𝜔𝑌 and 𝜔𝑍 are the accelerations and velocities at each direction.
Additionally, a constant signal was used as another feature to make possible the adjustment of a
linear combination of the features to a non-zero-mean signal [42]. We decided to not use the
magnetometer signals because of their dependence on the direction of movement and location
in relation to Earth’s magnetic field, which would make this signal less robust to everyday
applications. In addition, we use only the data from the IM+EMG unit placed over the tibialis
anterior muscle of each leg.

Because the frequency content of the inertial signals was below 50 Hz, the data were
resampled from 1,000 Hz to 100 Hz to remove redundant information contained in the signals
(using the function ‘scipy.signal.decimate’). Furthermore, the data were divided into segments
of 5 s (500 samples) to improve the performance of the least-squares method employed in the
multiple linear regression [43]. For the analysis, the 5-s duration segments were randomly split
into 𝑛𝑡𝑟 training subsets and 𝑛𝑡𝑠 test subsets, with twice as many segments for the training than
for the testing subset. For each of the 5-s segments, we created a signal 𝑌 representing the
instants immediately before the TO event, a 100-ms (100 samples) duration window ending at
the instant of the TO event (to be estimated using the TO event detected by the FSR sensor as
the true value). The signal 𝑌 was defined as having amplitude 1 inside the 100-ms window and
0 outside. The duration of the rectangular window equal to 100 ms was chosen to accommodate
the variability of the onset of tibialis anterior muscle activation close to the TO event.
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Figure 5 – Flowchart of the algorithm for TO-event estimation.This algorithm could be applied to estima-
tion of other gait events by adapting its 𝑌 signal.
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For each of the possible
9∑︀

𝑘=1

(︀
9
𝑘

)︀
= 29 − 1 = 511 combinations of the features, the

following procedure was performed:

1. 𝑛𝑡𝑠 matrices 𝑃𝑡𝑠𝑖 and 𝑛𝑡𝑟 matrices 𝑃𝑡𝑟𝑖 were built. Each of these 𝑃𝑖 matrices was built
with 500 lines, each line corresponding to each sample of the ith data segment, and with 𝑘

columns. Each column of the matrix contained the data of one of the features of a given
combination.

2. Each 𝑃𝑡𝑟𝑖 matrix and its corresponding signal 𝑌𝑡𝑟𝑖 were used to obtain the weights 𝛽𝑖 for
each of the features by using a multiple least squares approach:

𝛽𝑖 = 𝑃𝑡𝑟𝑖
+ · 𝑌𝑡𝑟𝑖 (2.2)

where the symbol + represents the pseudoinverse of the matrix 𝑃𝑡𝑟.

3. The final weight vector 𝛽 is obtained by computing the mean of the weights obtained for
each segment of 5 s:

�̄� =
1

𝑛𝑡𝑟

𝑛𝑡𝑟∑︁
𝑖=1

𝛽𝑖 (2.3)

4. The computed weights �̄� were used in the matrices of features previously separated for
test purposes, 𝑃𝑡𝑠, by multiplying each feature by the corresponding weight:

𝑌 𝑡𝑠𝑖 = 𝑃𝑡𝑠 · 𝛽 (2.4)

5. A function to find the peaks of signals above a certain threshold (function ‘find_peaks’
available with the dataset) based on comparison of neighbouring values was used to find
the peaks of each ˆ𝑌𝑡𝑠𝑖 signal. This procedure was performed considering thresholds
between the negative of the maximum value and the maximum value of the signal 𝑌 𝑡𝑠𝑖 ,
with steps of 1% of the maximum value.

6. The peaks were considered as the estimated instants of TO. If the peak of 𝑌 𝑡𝑠𝑖 was
inside the corresponding window of the 𝑌𝑡𝑠𝑖 signal, it was considered a true positive (TP).
Otherwise, it was considered a false positive (FP). Likewise, if no peak of 𝑌 𝑡𝑠𝑖 was found
outside the window of 𝑌𝑡𝑠𝑖 it was considered a true negative (TN), and, if no peak of 𝑌 𝑡𝑠𝑖

was found inside the window of 𝑌𝑡𝑠𝑖 it was considered a false negative (FN).
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7. The quality of the estimation was assessed by determining the true-positive rate (also
known as sensitivity, (2.5)) and the false-positive rate (computed as 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦,
(2.6)), where:

Sensitivity =

∑︀
𝑇𝑃∑︀

𝑇𝑃 +
∑︀

𝐹𝑁
(2.5)

Specificity =

∑︀
𝑇𝑁∑︀

𝑇𝑁 +
∑︀

𝐹𝑃
(2.6)

8. The true-positive and false-positive rates were used to build a receiver operating character-
istic (ROC) curve, in which each point of the curve corresponds to a threshold.

9. The accuracy of the estimator was computed for the threshold with the point of the ROC
curve nearest to the upper-left point of the graph (point (0,1)), where the accuracy is given
by:

Accuracy =

∑︀
𝑇𝑃 +

∑︀
𝑇𝑁∑︀

𝑇𝑃
∑︀

𝐹𝑁 +
∑︀

𝑇𝑁 +
∑︀

𝐹𝑃
(2.7)

The most accurate predictor, (i.e., the multiple linear regression equation with its coef-
ficients, the structure and parameters �̄� of the model), were selected to estimate the TO gait
event.
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3 Results

3.1 Open dataset

The dataset, consisting of all the data of the 22 healthy subjects plus one subject with foot
drop, is available as an open repository accessible on the internet (DOI: 10.6084/m9.figshare.-
7778255), under the CC0 license (<https://creativecommons.org/publicdomain/zero/1.0/>). The
data are stored in ASCII (text) format and can be downloaded separately or as a single compressed
file. The dataset has three types of contents: data of the measured signals (data files), data of the
gait events (event files), and metadata about the subjects (metadata file).

The data file contains a time column (‘Time’, in seconds), along with tab-separated
columns with data from the four IM+EMG units over the tibialis anterior (‘ta’) muscle and over
the tibia bone (‘tb’) of the right (‘R’) and left (‘L’) legs with triaxial (‘x’, ‘y’, ‘z’, see subsection
2.2 for the axis convention) accelerometers (‘ACC’, in units of gravitational acceleration), triaxial
gyroscopes (‘GYR’, in 𝑜/s), triaxial magnetometers (‘MAG’, in 𝜇T), EMG of the tibialis anterior
(‘EMG’, in mV), and from the force sensitive resistors (‘FSR’, in arbitrary units, normalized
from 0 to 1) under the heel (‘hs’) and toe (‘to’) of both feet, resulting in a total of 43 columns, all
sampled at 1,000 Hz. Accordingly, each file has the following header indicating the type of data
in each column:

Time, EMG_taR, ACCx_taR, ACCy_taR, ACCz_taR, GYRx_taR, GYRy_taR, GYRz_taR,
MAGx_taR, MAGy_taR, MAGz_taR, ACCx_tbR, ACCy_tbR, ACCz_tbR, GYRx_tbR, GYRy_tbR,
GYRz_tbR, MAGx_tbR, MAGy_tbR, MAGz_tbR, EMG_taL, ACCx_taL, ACCy_taL, ACCz_taL,
GYRx_taL, GYRy_taL, GYRz_taL, MAGx_taL, MAGy_taL, MAGz_taL, ACCx_tbL, ACCy_tbL,
ACCz_tbL, GYRx_tbL, GYRy_tbL, GYRz_tbL, MAGx_tbL, MAGy_tbL, MAGz_tbL, FSR_hsR,
FSR_toR, FSR_hsL, FSR_toL

These files are named ‘s<nn><c><t>.txt’, where <nn> refers to the number of the
subject from ‘00’ to ‘22’ (‘00’ is the subject with foot drop); <c> refers to the walking speed
(‘c’: comfortable, ‘s’: slow, or ‘f’: fast); and <t> refers to the trial (from ‘1’ to ‘6’). For each of
the 23 subjects there are three speeds and six trials (18 files), plus one file for the standing still
task (named ‘s<nn>up.txt’), for a total of 437 files).

The event file contains the indices (the line numbers in the corresponding data file) for
the following eight gait events (see subsection 1.1) identified in the header: RHS, RHO, LTS,
LTO, LHS, LHO, RTS, and RTO. The name of the event file follows the same convention as that
of the data file, followed by the letters ‘ev’ at the end of the file name. There is one event file for
each walking trial, for a total of 414 event files.

The metadata file, named ‘info.txt’, contains the subjects’ numbers and information from

https://doi.org/10.6084/m9.figshare.7778255
https://doi.org/10.6084/m9.figshare.7778255
https://creativecommons.org/publicdomain/zero/1.0/
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their anamneses. Following is the coding for the metadata (the first word identifies the name of
the column in the header):

• Subject: number of the subject (from ‘00’ to ‘22’).

• Gender: gender (‘F’ or ‘M’).

• DateBirth: date of the subject’s birth (yyyy/mm/dd)

• Age: subject’s age in years, months, and days.

• Illness: whether the subject has any self-declared illness (‘Yes’ or ‘No’).

• Illness2: type of illness (‘No’ if the subject does not have any illness).

• Mass: mass in kg (measured with a calibrated scale).

• Height: height in cm (measured with a calibrated stadiometer).

• BMI: body mass index in kg/m2.

• DateAcquisition: date of the subject’s evaluation (yyyy/mm/dd).

In total, there are 852 files in the dataset, occupying 6.35 GB. The dataset for the healthy
subjects contains data for a total of 9,661 gait strides, with stride length varying from 0.93 m to
2.22 m and walking speed varying from 0.63 m/s to 2.46 m/s (see Figure 6). For the subject with
the foot drop abnormality, there are data for 496 gait strides, with stride length from 1.03 m to
1.48 m and walking speed from 0.85 m/s to 1.77 m/s (see Figure 7).

Figure 8 shows plots of the ensemble averages over the gait cycle at comfortable speed
for the following variables: EMG activity of the tibialis anterior muscle, three-dimensional
acceleration, and angular velocity of the left and right legs. Figures from 9 to 11 show the plots
of averages for the same variables for the subject with foot drop over the gait cycle at different
speeds, comparing to the ensemble averages. Because the subjects walked six times each, with
trials 1, 3, and 5 in one direction and the other trials in the reverse direction, we did not compute
the ensemble average across trials for the Earth’s magnetic field data.
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Figure 6 – Violin plots (boxplots plus kernel density estimations) across the 22 healthy subjects from the
open dataset for the gait variables: stride duration, support duration, stride length, and speed,
calculated using the data from the force-sensitive resistor under the right foot for the different
walking speeds. The numbers shown at the top of each column indicate the total number of
gait strides available in the dataset at each speed (and used to generate these plots). For each
variable, the curve represents an estimation of the data distribution, the vertical black line
represents the interval for 95% of the data, the black box represents the interquartile range, and
the central dot represents the median value.
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Figure 7 – Violin plots (boxplots plus kernel density estimations) for the subject with foot drop from the
open dataset for the gait variables: stride duration, support duration, stride length, and speed,
calculated using the data from the force-sensitive resistor under the right foot for the different
walking speeds. The numbers shown at the top of each column indicate the total number of
gait strides available in the dataset at each speed (and used to generate these plots). For each
variable, the curve represents an estimation of the data distribution, the vertical black line
represents the interval for 95% of the data, the black box represents the interquartile range,
and the central dot represents the median value. The horizontal red line represents the median
value across the 22 healthy subjects.
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Figure 8 – Mean ± 1 standard deviation across the 22 healthy subjects from the open dataset for the
measured signals: tibialis anterior electromyographic activity (EMG TA), three-dimensional
acceleration (Accel.), and angular velocity (Ang. Vel.), over the left and right gait cycles
walking at a comfortable speed (see the section 2.2 for the axes convention). The mean ± 1
standard deviation termination of the gait support phase, indicated by the LTO or RTO events,
are shown by the vertical lines and shaded areas of the plots. The gait events were determined
using the data from the force-sensitive resistor under the right and left feet. The abbreviations
LHS, RHS, LTO, and RTO denote the gait events: left and right heel strike and left and right
toe-off, respectively. These curves are based on a total of 3,222 gait strides.
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Figure 9 – Mean ± 1 standard deviation for the subject with foot drop (red and blue) from the open
dataset, compared to mean ±1 standard deviation across the 22 healthy subjects (gray) for the
measured signals: tibialis anterior electromyographic activity (EMG TA), three-dimensional
acceleration (Accel.), and angular velocity (Ang. Vel.), over the left and right gait cycles
walking at a comfortable speed (see the section 2.2 for the axes convention). The mean ± 1
standard deviation termination of the gait support phase, indicated by the LTO or RTO events,
are shown by the vertical lines and shaded areas of the plots. The gait events were determined
using the data from the force-sensitive resistor under the right and left feet. The abbreviations
LHS, RHS, LTO, and RTO denote the gait events: left and right heel strike and left and right
toe-off, respectively. These curves are based on a total of 160 gait strides.
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Figure 10 – Mean ±1 standard deviation for the subject with foot drop (red and blue) from the open
dataset, compared to mean ± 1 standard deviation across the 22 healthy subjects (gray) for the
measured signals: tibialis anterior electromyographic activity (EMG TA), three-dimensional
acceleration (Accel.), and angular velocity (Ang. Vel.), over the left and right gait cycles
walking at a slow speed (see the section 2.2 for the axes convention). The mean ±1 standard
deviation termination of the gait support phase, indicated by the LTO or RTO events, are
shown by the vertical lines and shaded areas of the plots. The gait events were determined
using the data from the force-sensitive resistor under the right and left feet. The abbreviations
LHS, RHS, LTO, and RTO denote the gait events: left and right heel strike and left and right
toe-off, respectively. These curves are based on a total of 189 gait strides.
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Figure 11 – Mean ±1 standard deviation for the subject with foot drop (red and blue) from the open
dataset, compared to mean ±1 standard deviation across the 22 healthy subjects (gray) for the
measured signals: tibialis anterior electromyographic activity (EMG TA), three-dimensional
acceleration (Accel.), and angular velocity (Ang. Vel.), over the left and right gait cycles
walking at a fast speed (see the section 2.2 for the axes convention). The mean ±1 standard
deviation termination of the gait support phase, indicated by the LTO or RTO events, are
shown by the vertical lines and shaded areas of the plots. The gait events were determined
using the data from the force-sensitive resistor under the right and left feet. The abbreviations
LHS, RHS, LTO, and RTO denote the gait events: left and right heel strike and left and right
toe-off, respectively. These curves are based on a total of 147 gait strides.
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3.2 Gait events estimation

The estimation of the TO events was performed for different data groups. Each algorithm
execution considered data from one subject, one of his or her legs, and one speed condition, in
which the possible speed conditions were: comfortable, fast, slow, and all speeds combined.
Because we evaluated data from the two legs of 23 subjects at four speeds, the algorithm was
run 184 times, 176 times for healthy subjects and 8 for the subject with foot drop abnormality.
For each execution, we computed the set of features whose true-positive rate and false-positive
rate corresponded to the largest areas under the ROC curves and calculated the accuracy for this
set of features (see Table 2). Examples of ROC curves with the largest areas for the four speed
conditions are shown in Figure 12, that contains information about a healthy subject (‘s03’) and
the one with foot drop (‘s00’). After the best set of features and the threshold for estimation of
the TO event were defined, they were used as parameters for the multiple linear regression and
subsequent event estimation.
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Figure 12 – Exemplary ROC curves of estimator for subjects from the open data set for four speed
conditions over both legs: comfortable (solid), fast (dotted), slow (dashed), and all the three
speeds combined (dash-dotted).

(a) Subject ‘s03’ - Healthy

(b) Subject ‘s00’ - Foot Drop

We chose to exemplify estimation results by the regression of the data group of all speeds
combined, to demonstrate the coverage of the estimator. Although this was not the data group
whose ROC curves pointed to the most promising estimator, the TO events were successfully
identified by the estimator, as show Figures 13 and 14.
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Table 2 – Sensitivity, specificity and accuracy of the TO-event estimation at different gait speeds. For the
healthy group, median and [5𝑡ℎ, 95𝑡ℎ percentiles] across subjects are shown. For the subject
with foot drop, the left side is affected.

Speed Group

Healthy (n=22) Impaired (n=1)

Left Right

Sensitivity

Comfortable 0.9680 [0.9259, 1.0000] 0.9714 0.9848
Fast 0.9813 [0.9649, 1.0000] 0.7077 1.0000
Slow 0.9521 [0.8906, 1.0000] 0.9747 0.9756
All 0.8905 [0.7969, 0.9886] 0.8416 0.9249

Specificity

Comfortable 0.9543 [0.9198, 1.0000] 0.9518 0.9620
Fast 0.9677 [0.9524, 1.0000] 0.8289 1.0000
Slow 0.9521 [0.8906, 1.0000] 0.9495 0.9804
All 0.8984 [0.8144, 0.9789] 0.7132 0.8872

Accuracy

Comfortable 0.9603 [0.8477, 1.0000] 0.9608 0.9724
Fast 0.9744 [0.8452, 1.0000] 0.7730 1.0000
Slow 0.9328 [0.5829, 0.9991] 0.9663 0.9783
All 0.8879 [0.7041, 0.9836] 0.7737 0.9043

Figure 14 – Results of TO-event estimation for the subject ‘s00’ from the open dataset, using data from
all speeds for training and testing. For the left leg, the following features were used in the
regression: ‘ACC’ (magnitude), ‘ACCx’, ‘ACCz’, ‘GYR’ (magnitude), ‘GYRx’ and ‘GYRz’
(estimation threshold 0.52). For the right leg, the following features were used: ‘ACCx’,
‘ACCz’, ‘GYRx’, ‘GYRy’, ‘GYRz’ and the constant signal (estimation threshold 0.45). The
references are signals from force-sensitive resistor (dotted) and 𝑦 (dashed, see section 2.7).
The crosses matches peaks found on regression signal �̂� (solid). The shown segment is from
trial 1 at comfortable speed.
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Figure 13 – Results of TO-event estimation for subject ‘s03’ from the open dataset, using data from
all speeds for training and testing. For the left leg, the following features were used in the
regression: ‘ACC’ (magnitude), ‘ACCx’, ‘ACCz’, ‘GYR’(magnitude), ‘GYRx’, ‘GYRy’,
and ‘GYRz’ (estimation threshold 0.46). For the right leg, the following features were used:
‘GYRy’, ‘GYRz’, and the constant signal (estimation threshold 0.61). The references are
signals from force-sensitive resistor (dotted) and 𝑦 (dashed, see section 2.7). The crosses
match peaks found on regression signal �̂� (solid). The shown segment is from trial 1 at
comfortable speed.
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4 Discussion

In this study we created an open dataset of inertial, magnetic, electromyographic, and
foot-ground contact data from wearable sensors placed on both legs and feet during walking at
different speeds and standing still. Data were generated by 22 healthy subjects and one subject
with a foot drop gait abnormality. We developed a method based on multiple linear regression
for the estimation of gait events using the inertial data from this open dataset.

The open dataset, available at Figshare (DOI: 10.6084/m9.figshare.7778255) under a
CC0 license, contains raw data (with minimal processing) sampled at 1,000 Hz totaling 9,661
gait strides of healthy subjects and 496 gait strides of the subject with the foot drop, along with
data from the same sensors of each subject standing still. All the healthy subjects exhibited
consistent intra- and inter-subject patterns concerning the EMG activity of the tibialis anterior
muscle and the three-dimensional acceleration and angular velocity of the left and right legs at
the different gait speeds. Also included in the dataset are data files with indices of the actual
gait events for each stride and a file with information about the subjects’ health characteristics.
This open dataset can be used in future studies related to gait-event estimation based on inertial
sensors. The dataset will enable researchers to test algorithms for gait-event estimation against
a common reference, potentially improving the replicability and transparency of those studies;
these are some of the known benefits of open data [12, 13].

The only two other open datasets of inertial gait signals are useful but include only
limited signal types, limiting their application. The MAREA gait database [35] comprises
triaxial accelerometer data and foot-ground contact of 20 healthy subjects in different gait
activities, but no other inertial signals. The OSHWSP gait dataset [11] contains data from triaxial
accelerometers and gyroscopes of 12 healthy subjects walking at self-selected speed, but not
foot-ground contact data.

The algorithm we developed to estimate gait events based on multiple linear regression
produced satisfactory results; the median accuracy for the healthy subjects in the situation where
all different speeds were combined, a more real scenario for day-to-day application, was 88.8%.
When the present algorithm was applied to estimate the toe-off event for the impaired side of the
subject with foot drop abnormality, the worst accuracy of the estimation was 77.3%, at the fast
speed. However, the subject reported that, because of her gait abnormality, she is not used to
walking at a fast speed, so this condition may not represent a valid situation where the algorithm
can be evaluated. If we disregard the fast condition, the accuracy of TO event detection increased
to 97.3% for the combination of comfortable and slow speeds. A direct comparison of these
results with the literature is problematic, because the use of different gait conditions, algorithms,
data analyses, and metrics affect how the performance of gait-event estimation is defined. In
the studies most similar to the present one, the accuracy of gait-event estimation varies from

https://doi.org/10.6084/m9.figshare.7778255


Chapter 4. Discussion 39

from 66.7% to 90.5% [33], 92.5% [26], 93% [23], 95% [27, 28], and 98% [15]. We conclude
that the present algorithm presents comparable performance to other existing algorithms in the
literature concerning healthy subjects and the preliminary result based on one subject with foot
drop abnormality is promissing.

The proposed algorithm presents some limitations. The brute-force search we adopted to
determine the best set of features for the model structure (which inertial signal or combination of
signals) and the corresponding parameters (regression coefficients) resulted in different sets of
features and coefficients for different subjects in the healthy group. Because the overall intra-
and inter-subject patterns for the measured variables were consistent (e.g., see the ensemble
averages in Figure 8), we were expecting that the best model structure would have the same set of
features across subjects. It is not clear why we obtained different sets for different subjects. This
characteristic of the algorithm implies that, for use in a real-time application, one would have
first to perform a calibration phase with known foot-ground contact forces (basically repeating
the steps we conducted in this study) for the intended subject.
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5 Conclusion

The open dataset we created contains 9,661 gait strides for the healthy subjects and 496
for the subject with the foot drop. It will enable researchers to test algorithms for gait-event
estimation against a common reference.

The algorithm we developed to estimate gait events based on multiple linear regression
produced satisfactory results (a median accuracy across the healthy subjects and gait speeds
of 88.8%, and an accuracy of 97.3% for the affected limb of the subject with foot drop) and is
potentially adjustable for real-time application.

Despite the apparent drawback of the calibration step that is required for real-time
application, the presented method has the advantage of computational efficiency at the event
estimation step, since it is a simple multiple linear regression. Once the multiple linear regression
equation is determined, it can be easily embedded in the wearable device for real-time gait-event
estimation.
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